
WITTENSTEIN high integrity systems
Americas:	 +1 408 625 4712
ROTW:	 +44 1275 395 600

HighIntegritySystems

email: sales@highintegritysystems.com
web: www.highintegritysystems.com

SAFERTOS® is a highly popular, safety certified, real
time kernel for microcontrollers, delivering superior
performance and pre-certified dependability while
using minimal resources.

Functional Overview

The SAFERTOS pre-emptive real time scheduler has the
following features:

•	 Any number of tasks can be created - system RAM
constraints are the limiting factor.

•	 Each task is assigned a priority - any number of priorities
can be used.

•	 Any number of tasks can share the same priority -
allowing for maximum application design flexibility.

•	 The highest priority task that is able to execute (i.e. that
is not blocked or suspended) will be the task selected
by the scheduler to execute.

•	 Supports time sliced round robin scheduling for tasks of
equal priority.

•	 Queues can be used to send data between tasks, and
to send data between interrupt service routines and
tasks.

•	 Binary semaphores and counting semaphores make
use of the queue primitive – ensuring code size is kept
to a minimum.

•	 Tasks can block for a fixed period.
•	 Tasks can block to wait for a specified time.
•	 Tasks can block with a specified timeout period to wait

for events.
•	 Software timers.
•	 FPU support.
•	 Definition and manipulation of MPU regions on a per

task basis.
•	 Run time statistics.

Compact Footprint

Typical ROM Requirements 6-15kB
Typical RAM Requirements 500 bytes
Typical Stack Requirements 400 bytes/task

Key Features

IEC 61508 SIL3 certified
IEC 62304 Class C compliant
Full Design Assurance Pack
Supports popular 32 bit microcontrollers

System Tasks

Including SAFERTOS in your application allows the
application to be structured as a set of autonomous
tasks - the resultant system functionality being the sum
of the functionality of the multiple tasks that make up the
application.

Each task executes within its own context with no
coincidental dependency on other tasks within the system
or the scheduler itself.

Task States

Only one task can actually be executing at any one time. The
scheduler is responsible for selecting the task to execute in
accordance with each task’s relative priority and state.

A task can exist in one of the states described in the Table
'Task States', with valid transitions between states depicted
by the Figure 'Valid task state transitions‘.

Ready

Blocked

Suspended

Running

Blocking API function
called

Event

xTaskSuspend()
called

xTaskSuspend()
called

xTaskSuspend()
called

xTaskResume()
called

Figure Valid Task State Transitions

SAFERTOS® Datasheet

mailto:sales%40highintegritysystems.com?subject=
http://www.highintegritysystems.com/

WITTENSTEIN high integrity systems
Americas: 	 +1 408 625 4712
ROTW:	 +44 1275 395 600

email: sales@highintegritysystems.com
web: www.highintegritysystems.com

Task State Description

Running The task selected by the scheduler to
execute and which is currently utilizing the
processor.

Blocked A task waiting for an event. It cannot
continue until the event occurs. Tasks in
the Blocked state always have a timeout
period, after which the task will become
unblocked.

Suspended A task will enter the Suspended state when
it is the subject of a call to the xTaskSus-
pend() API function, and remain in the
Suspended state until unsuspended by a
call to the xTaskResume() API function.

Ready A task is in the Ready state if it is able to
enter the Running state but is not currently
the task that is selected to execute.

Task Priorities

A priority is assigned to each task when the task is created,
the task priority can be altered during runtime.

Low numeric values denote low priority tasks. The lowest
priority value that can be assigned to a task is 0. High
numeric values denote high priority tasks. The maximum
priority that can be assigned to a task is user configurable.

The Scheduler

The Scheduler has responsibility for:

•	 Deciding which task will be the task selected to
enter the Running state, and performing the context
switching accordingly.

•	 Measuring the passage of time.

•	 Transitioning tasks from the Blocked state into the
Ready state upon the expiration of a timeout period.

Measuring Time

A periodic (tick) timer interrupt is used to measure time.
The time between two consecutive timer interrupts is defined
to be one “tick” period. Times are therefore measured and
specified in “tick” units.

Scheduling Policy

The scheduler selects as the task to be in the Running
state the highest priority task that would otherwise be in the
Ready state. In other words, the task chosen to execute is
the highest priority task that is able to execute. Tasks in the
Blocked or Suspended state are not able to execute.

Different tasks can be assigned the same priority. When
this is the case the tasks of equal priority are selected to
enter the Running state in turn. Each task will execute for
a maximum of one tick period before the scheduler selects
another task of equal priority to enter the Running state.

While the scheduler will ensure that tasks of equal priority
will be selected to enter the Running state in turn, it is not
guaranteed that each such task will get an equal share of
processing time.

Yielding

Yielding is where a task volunteers to leave the Running
state by re-entering the Ready state. When a task yields the
scheduler re-evaluates which task should be in the Running
state. If no tasks of higher or equal priority to the yielding
task are in the Ready state then the yielding task shall again
be selected as the task to enter the Running state.

A task can yield by explicitly calling the taskYIELD() macro,
or by calling an API function that changes the state or priority
of another task within the application.

Scheduler States

The scheduler can exist in one of the states described by
the Table 'Scheduler States', with valid transitions between
states depicted by the Figure 'Valid Scheduler State
Transitions'.

Initialization

Active

Suspended

xTaskStartScheduler()

xTaskSuspendScheduler()xTaskResumeScheduler()

Figure Valid Scheduler State Transitions

Table Task States

mailto:sales%40highintegritysystems.com?subject=
http://www.highintegritysystems.com/

email: sales@highintegritysystems.com
web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas: 	 +1 408 625 4712
ROTW:	 +44 1275 395 600

Scheduler State Description

Initialization The initial state, prior to the
scheduler being started.

While in the Initialization state the
scheduler has no control over the
application execution.

Tasks and queues can be created
while the scheduler is in the
Initialization state.

Active While in the Active state the
scheduler controls the application
execution by selecting the task that
is in the Running state.

Suspended The task that was in the Running
state when the scheduler entered
the Suspended state shall remain in
the Running state until the scheduler
returns to the Active state.

The scheduler is started using the xTaskStartScheduler() API
function. Calling xTaskStartScheduler() causes the creation
of the Idle task. The Idle task never enters the Blocked or
Suspended state. It is created to ensure there is always at
least one task that is able to enter the Running state.

The scheduler enters the Suspended state following a call
to xTaskSuspendScheduler(), and returns to the Active state
following a call to xTaskResumeScheduler().

A code section that must be executed atomically (without
interruption from other tasks or interrupts) to guarantee data
integrity is called a critical region. The traditional method
of implementing a critical region of code is to disable then
re-enable interrupts as the critical region is entered then
exited respectively. The macros taskENTER_CRITICAL() and
taskEXIT_CRITICAL() are provided for this purpose.

Implementing a critical section through the use of taskENTER_
CRITICAL() and taskEXIT_CRITICAL() has the disadvantage
of the application being unresponsive to interrupts for the
duration of the critical region. The scheduler suspension
mechanism provides an alternative approach that permits
interrupts to remain enabled during critical regions.

When the scheduler is in the Suspended state, by calling
xTaskSuspendScheduler(), a switch to another task will
never occur. The task executing the critical region is
guaranteed to remain as the task in the Running state until
xTaskResumeScheduler() is called.

Interrupts remain enabled while the scheduler is in the
Suspended state. Critical regions implemented using
the scheduler suspension mechanism therefore protect
the critical data from access by other tasks, but not by
interrupts. It is safe for an interrupt to access a queue while
the scheduler is in the Suspended state.

Table Scheduler States A switch to a higher priority task that enters the Ready
state while the scheduler is in the Suspended state will be
held pending until xTaskResumeScheduler() is called. It is
therefore still desirable for the scheduler not to be held in
the Suspended state for an extended period. Doing so will
reduce the responsiveness of high priority tasks.

Intertask Communication

SAFERTOS provides a queue implementation that permits
data to be transferred safely between tasks. The queue
implementation is flexible and can be used to achieve
a number of objectives, including simple data transfer,
synchronization and semaphore type behavior.

Queue Characteristics

The following bullet points summarize the queue
implementation:

•	 The size of each item and the maximum number of
items that the queue can hold are configured when the
queue is created.

•	 Items are sent to a queue using the xQueueSend() API
function.

•	 Items are read from a queue using the xQueueReceive()
API function.

•	 Queues are FIFO buffers - that is, the first item sent to
a queue is the first item retrieved from the queue.

•	 Data transferred through a queue is done so by copy
- the data is copied byte for byte into the queue when
the data is sent, and then copied byte for byte out of
the queue when the data is subsequently received.

•	 Queues can have multiple senders and receivers.

Queue Events

Data being sent to or received from a queue is called a
queue “event”.

When calling xQueueSend() a task can specify a period
during which it should be held in the Blocked state to wait
for space to become available in the queue if it finds the
queue is already full. The task is blocking on a queue event
and will leave the Blocked state automatically when another
task or interrupt removes an item from the queue.

When calling xQueueReceive() a task can specify a period
during which it should be held in the Blocked state to wait
for data to become available from the queue if it finds the
queue is already empty.

mailto:sales%40highintegritysystems.com?subject=
http://www.highintegritysystems.com/

WITTENSTEIN high integrity systems
Americas: 	 +1 408 625 4712
ROTW:	 +44 1275 395 600

email: sales@highintegritysystems.com
web: www.highintegritysystems.com

Again the task is blocking on a queue event and will leave the
Blocked state automatically when another task or interrupt
writes data to the queue.

If more than one task is blocked waiting for the same event
then the task unblocked upon the occurrence of the event
is the task that has the highest priority. Where more than
one task of the same priority is blocked waiting for the same
event then the task unblocked upon the occurrence of the
event will be the task that has been in the Blocked state for
the longest time.

Binary Semaphores

Semaphores are a means for a task to signal that it wishes
to have exclusive access to data or other resources. While
the task 'has' the semaphore other tasks know they are
excluded from accessing the protected resource.

To be permitted access to the resource the task must first
'take' the semaphore, and, when it has finished with the
resource, 'give' the semaphore back. If it cannot 'take'
the semaphore it knows the resource is already in use by
another task and it must wait for the semaphore to become
available. If a task chooses to enter the Blocked state to wait
for a semaphore it will automatically be moved back to the
Ready state as soon as the semaphore is available.

SAFERTOS includes API functions which fully support binary
semaphores. To keep the code size small the semaphore
implementation makes use of the queue primitive.

A binary semaphore can be considered to be a queue that
can contain, as a maximum, one item. For efficiency the item
size can be zero, thus preventing any data actually being
copied into and out of the queue. The important information
is whether or not the queue is empty or full (the only two
states as it can only contain one item), not the value of the
data it contains.

When the resource is available, the queue (representing the
semaphore) is full. To ‘take’ the semaphore the task simply
receives from the queue – resulting in the queue being empty.
To ‘give’ the semaphore the task simply sends to the queue,
resulting in the queue again being full. If, when attempting to
receive from the queue, it finds the queue is already empty,
a task knows it cannot access the resource and can choose
whether or not it wishes to enter the Blocked state to wait
for the resource to become available again.

Counting Semaphores

Counting semaphores are implemented in a similar fashion
to Binary semaphores. Underlying the counting semaphore
APIs SAFERTOS makes use of the queue primitives to
achieve an efficient design.

Counting semaphores have a maximum limit on the depth
of their queue. As long as there are items in the queue, the
resource is available. As with binary semaphores, once the
count reaches zero, the resource is unavailable, and the task
can choose whether or not it wishes to enter the Blocked
state to wait for the resource to become available again.

Communication between Tasks and Interrupts

SAFERTOS provides a set of interrupt safe API calls for
Queue and semaphore handling from within interrupt service
routines

MPU Protection

The Memory Protection Unit (MPU) allows software of
different Safety Integrity Levels (SIL) to co-exist in a single
build of code without unwanted mutual interference.

Figure MPU Task Isolation

The MPU implementation is tightly coupled to the selected
processor core and provides a means to establish access
permissions for regions of memory. The actual number
of memory regions allowed, the size of the regions and
addressing is processor dependent.

Each region has access permissions which are also heavily
processor dependent. Code execution can be allowed or
disallowed for a region. A region can be set for read-only
access, read/write access, or no access for both privileged
and user modes. This can be used to set up an environment
where only kernel or system code can access certain
hardware registers or sections of code.

System Resources

Task
1

Task
3

Task
2

SAFERTOS

mailto:sales%40highintegritysystems.com?subject=
http://www.highintegritysystems.com/

email: sales@highintegritysystems.com
web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas: 	 +1 408 625 4712
ROTW:	 +44 1275 395 600

SAFERTOS supports the definition and manipulation of MPU
regions on a per task basis, where each task is assigned to
specific memory regions.

Once the regions are defined, the MPU is enabled and the
processors Memory Manage Fault handler is enabled. Any
access violation of a region will cause a Memory Manage
Fault, and the processor fault handler will be activated. The
fault handler is invoked prior to the actual memory access.

Hook Functions

The host application is required to provide one hook (or
callback) function with three further optional hook functions.

Hook Function Description
Application
Error Hook

Called upon the detection of a fatal
error – either a corruption within the
scheduler data structures or a potential
stack overflow while performing a
context switch. The Application Error
Hook enables the host application
to perform application specific error
handling to ensure the system is
placed into a safe state. The Error
Hook function is required.

Application
Task Delete
Hook

Called when a task is deleted.
Its purpose is to inform the host
application that the memory allocated
by the application for use by the task
is once again free for use for other
purposes.

Application Idle
Hook

Called repeatedly by the scheduler
idle task to allow application specific
functionality to be executed within
the idle task context. It is common to
use the idle task hook to perform low
priority application specific background
tasks, or simply put the processor into
a low power sleep mode.

Tick Hook The Tick Hook function is called on
each execution of the Tick handler to
allow application specific functionality
to be executed on a periodic basis.
It is possible to use the Tick Hook to
implement an application timer.

Error Checking

SAFERTOS performs thorough API input validity checking
(as far as practically possible) in order to mitigate the risk
of misuse by the host application. If the value of an API
parameter is found to be invalid, the API function will not
perform any action other than returning an error code
indicative of the error encountered.

SAFERTOS performs the following run time integrity
checking with the intention of facilitating the detection of
data corruption:

•	 The execution context of a task that is not in the
Running state is stored on the stack allocated to
the task. The context of a task will only be saved
onto the stack of the task if there is sufficient
stack space remaining to hold the entire context;

•	 A check is performed to ensure that the Task Control
Block associated with the task selected to enter the
Running state is valid. This is achieved by checking
key data parameters against their mirror copies;

•	 When the context of a task is restored, the
setting of the Processor Status Register
(PSR) is checked against its expected value;

•	 Prior to incrementing the tick count value, a check
is performed to test that the current tick count value
remains at the last written and therefore expected value.

•	 SAFERTOS variants that support a MPU implementation
will verify the correct processor modes and privilege
levels are restored.

A failure in any of these integrity checks will result in a call to
the Application Error Hook function call.

Table Hook Functions

mailto:sales%40highintegritysystems.com?subject=
http://www.highintegritysystems.com/

WITTENSTEIN high integrity systems
Americas: 	 +1 408 625 4712
ROTW:	 +44 1275 395 600

email: sales@highintegritysystems.com
web: www.highintegritysystems.com

Development Life Cycle

SAFERTOS was built as a complementary offering to
FreeRTOSTM, with common functionality but with a uniquely
designed safety critical implementation.

The FreeRTOS functional model was subjected to a full
HAZOP and all weaknesses within the functional model and
API were identified and resolved. The resulting requirements
set was put through a full IEC 61508 SIL3 development life
cycle, the highest possible for a software only component.

The code base has been developed to conform to the
majority of the MISRA guide lines, with a few additional rules
of our own for extra safety.

Underpinning the SAFERTOS development life cycle is our
requirements management process. We have achieved
100% traceability across the complete SAFERTOS project,
from the very first customer requirement all the way through
to the very last validation test result. The 100% traceability
is an important element when taking a product through
certification, as it demonstrates the completeness of the
design.

Design Assurance Pack

SAFERTOS is supplied with a Design Assurance Pack (DAP)
which contains every design artefact produced during the
full development life cycle, from development and safety
life cycle plans, requirements specifications and design
documents, to HAZOPS, the source code, all verification
and validation documents and relating evidence.

The full test harness, with User and Safety manuals, is also
supplied. Customers who purchase SAFERTOS have all the
information required to independently complete their own
product certification.

The SAFERTOS Safety Manual clearly identifies each
and every component included within the SAFERTOS
delivery, and their related checksums. The safety manual
contains a concise list of instructions clearly identifying the
installation and integration process engineers should follow
when incorporating SAFERTOS into their development
environment. Should additional assistance be required our
experienced engineers can provide support.

The DAP is accessed via a graphical interface containing
hyperlinks into each individual document.

Figure The SAFERTOS Development Life Cycle

Software
Requirements

Capture

Software System
Verification

Software
Integration
Verification

Software
Detailed Design

Software
Architectural

Design

Software
Release

Procedure

Software Code
Verification

Software
Code

Verification
Results

Software
Integration

Results

Verified Integrated
Software

Software Design Document
(High Level Design)

Verified Modules

Software System
Verification

Results

 S
of

tw
ar

e
In

te
gr

at
ion

Ve
rfi

ica
tio

n
Of R

isk
 C

on
tro

l

Verified Software

System
Requirements

Software Requirements
Specification

Software Test Description (Software System Verification)

Software Test Description
(Software Integration Verification)

Requirem
ents Decomposition

Risk Analysis

Key:
Boxes repersent typical development lifecycle activities
Solid arrows indicate typical deliverables transfered into/out of activities
Dotted arrows indicate deliverables just to the Risk Management File

Outputs from problem resolution process

Inputs to problem resolution process

Software Coding

Software Design Document
(Low Level Design) Raw code

Software Test
Description

(Software Code
Verification)

Software Test Plan

mailto:sales%40highintegritysystems.com?subject=
http://www.highintegritysystems.com/

email: sales@highintegritysystems.com
web: www.highintegritysystems.com

WITTENSTEIN high integrity systems
Americas: 	 +1 408 625 4712
ROTW:	 +44 1275 395 600

The DAP contains the following documents:

•	 SAFERTOS User Manual: Provides an overview
of SAFERTOS and gives a description of
the SAFERTOS task, queue and scheduling
mechanisms, describes the installation and
setup procedure, provides an API reference.

•	 SAFERTOS Safety Manual: Contains a
concise list of instructions clearly identifying
the installation and integration process
engineers should follow when incorporating
SAFERTOS into their development environment.

•	 Upgrading from FreeRTOS to SAFERTOS Application
Note: Highlights the areas requiring modification when
moving an application from FreeRTOS to SAFERTOS.

•	 Demonstration Program: “Out of the box”
examples configured for the selected toolchain
demonstrating the features of SAFERTOS.

•	 Software Version Description: Contains an inventory
of the materials released, their related
checksums and a record of the changes
made to this deliverable over its lifetime.

•	 Software Development Plan: Defines the IEC
61508 SIL 3 compliant development life cycle used
in the development of this SAFERTOS delivery.

•	 Configuration Management Plan: Gives an overview
of our configuration management tool, identifies the
items under configuration control, and the configuration
management rules and working procedures used
in the development of this SAFERTOS delivery.

•	 Software Test Plan: Defines the objectives for each
Verification and Validation (V&V) phase, and the related
test environment. Defines the complete V&V schedule.

•	 Software Safety Management Plan: The objective of
the Software Safety Management Plan is to adequately
justify that SAFERTOS meets its high level safety
requirements. This SSMP forms the plan for ensuring
that safety is considered throughout the SAFERTOS
development programme and is appropriately designed
into SAFERTOS.

Figure SAFERTOS DAP Graphical Interface

mailto:sales%40highintegritysystems.com?subject=
http://www.highintegritysystems.com/

WITTENSTEIN high integrity systems
Americas:	 +1 408 625 4712
ROTW:	 +44 1275 395 600

email: sales@highintegritysystems.com
web: www.highintegritysystems.com

•	 Customer Requirements Specification: Defines the
customer requirements for the SAFERTOS product.

•	 Software Requirements Specification: Defines the
software requirements for SAFERTOS with respect to
its functional requirements and qualification methods.

•	 Architecture Software Design Description: Describes the
architectural software design for the SAFERTOS product
with respect to its structure and design constraints.

•	 Detailed Software Design Description: Describes
the detailed software design for the SAFERTOS
product with respect to the individual modules.

•	 HAZOP Reports: This document contains the
SAFERTOS Hazard and Operability Study, the hazard
assessment, risk reduction methods, the safety
related requirements and details of any residual risks.

•	 API Usage Safety Review: Analyses the functions
and macros that constitute the API to determine
any actual or potential behavior of the SAFERTOS
API that could lead to unsafe or inappropriate
use by a user or other interested person.

•	 Software Test Description: Details every test
step, within each test case, by its inputs,
expected outputs and operating instructions.

•	 Kernel Source Code: Full source code and
build files provided in C and Assembler format.

•	 Test harness: Full source code and build files provided for
the test harness used to verify the SAFERTOS product.

•	 Test Harness Build Procedure: Provides instructions
on building and using the software test harness
when performing formal testing of the product.

•	 Individual Test Logs: The actual test result log files.

•	 Software Test Report: The Software test report gives
an overview of the results from the V&V process,
before going into the details of each test case.

•	 Evidence Supporting IEC 61508-3 SIL3 Claim: The
claim collates and references all evidence that supports
the claim that SAFERTOS requirements have been
specified and met and that it has been developed
and certified to meet the software development
requirements of IEC 61508-3 Safety Integrity Level (SIL)
3”. It uses a Claims, Argument and Evidence approach.

•	 IEC 61508 Compliance Matrix: Provides Cross-
references from IEC 61508: 2010 into the SAFERTOS
development life cycle.

SAFERTOS Configuration

SAFERTOS is licensed as a SAFERTOS variant, where
a variant is defined according to the developer’s choice
of micro-processor and tool chain. A robust RTOS that
inherently has less risk - the API and the core SAFERTOS
design and code is common between all SAFERTOS
variants; the remaining port layer is adapted to support
the selected micro-processor. Each SAFERTOS variant is
subjected to the full IEC 61508 compliant development life
cycle.

Supported Processors

SAFERTOS has been specifically designed for the 32 bit
micro-controller market. No allowances or compromises
have been incorporated to support other platforms. This has
resulted in a highly optimized design and minimal resource
footprint, providing a concise feature set.

Certification

SAFERTOS can be licensed as a pre-
certified IEC 61508 SIL3 software
component.

SAFERTOS was initially certified by
TÜV SÜD in 2007, resulting in the
world’s first ever pre-certified RTOS.

SAFERTOS is suitable for inclusion in developments
requiring certification against IEC 62304 Class C, IEC 61508
SIL3 and domain adaptations of IEC 61508.

License Model

SAFERTOS is royalty free, with flexible licensing models.
Please give one of our representatives a call today to discuss
which license model best suits your needs.

WITTENSTEIN high integrity systems

Worldwide Sales and Support
Americas: +1 408 625 4712
ROTW: +44 1275 395 600
Email:	 sales@highintegritysystems.com
Web:	 www.highintegritysystems.com

mailto:sales%40highintegritysystems.com?subject=
http://www.highintegritysystems.com/
mailto:sales%40highintegritysystems.com?subject=
http://www.highintegritysystems.com

