
PCI / PCIe

Time and Frequency Processor

User’s Guide

Products Included:

PCI

bc635PCI-V2

bc637PCI-V2

bc635PCI-V2-OCXO

bc637PCI-V2-OCXO

PCIe

bc635PCIe

bc637PCIe

bc635PCIe-OCXO

bc637PCIe-OCXO

Product CD, 098-00179-000

November 2, 2009

Revision A

Symmetricom Customer Assistance

Symmetricom's Customer Assistance Centers are a centralized resource to handle all of your cus-

tomer needs.

Customer Assistance Center Telephone Numbers:

n Worldwide (Main Number): 1-408-428-7907

n USA, Canada, Latin America including Caribbean, Pacific Rim including Asia, Australia and New

Zealand: 1-408-428-7907

n USA toll-free: 1-888-367-7966 (1-888-FOR-SYMM)

n Europe, Middle East & Africa: 49 700 32886435

Technical Support can be obtained either through theOnline Support area of our website:

(http://www.symmetricom.com/support/online-support/ttm-product-support/), or by calling one of the

above Customer Assistance Center numbers.

When calling the worldwide or USA-based number, select Option 1 at the first prompt. Telecom Solu-

tions Division customers should then select Option 1; Timing, Test andMeasurement Division cus-

tomers should then select Option 2.

Technical Support personnel are available by phone:

n Between 7 a.m. to 5 p.m. Pacific Time, weekdays through theMain Customer Assistance Center

number 1-408-428-7907.

n Between 8 a.m. to 5 p.m. Central European Timeweekdays at the Europe, Middle East and

Africa number 49 700 32886435.

n After hours support for emergencies only is handled through the worldwide (main) number 1-408-

428-7907.

Customers who have purchased Technical Support Contracts may e-mail support requests to:

n support@symmetricom.com (Americas, Asia, Pacific Rim)

n emeasupport@symmetricom.com (Europe, Middle East, Africa)

Copyright

Copyright © 2009 Symmetricom, Inc.

All rights reserved.

Due to continued product development this informationmay change without notice. If you find any

errors in the documentation, please report them to us in writing. Symmetricom, Inc. does not warrant

that this document is error-free.

Intellectual Property

The software contains proprietary information of Symmetricom, Inc.; it is provided under a license

agreement containing restrictions on use and disclosure and is also protected by copyright law.

Reverse engineering of the software is prohibited.

Limited Product Warranty

Hardware and embedded software - For a period of one (1) year from date of shipment by Sym-

metricom, Symmetricom warrants that all Products shall be free from defects in design, material, and

workmanship; shall conform to and perform in accordance with Symmetricom's published spec-

ifications, if any; shall be free and clear of any liens and encumbrances; and shall have good and valid

title. This warranty will survive inspection, acceptance, and payment by Buyer. Symmetricom does

not warrant that the operation of such Products will be uninterrupted or error free. This warranty does

not cover failures caused by acts of God, electrical or environmental conditions; abuse, negligence,

accident, loss or damage in transit; or improper site preparation.

This warranty shall be null and void in the event (i) Buyer or any third party attempts repair of the

goods without Symmetricom's advance written authorization, or (ii) defects are the result of improper

or inadequatemaintenance by Buyer or third party; (iii) of damage to said goods by Buyer or third

party-supplied software, interfacing or supplies; (iv) of improper use (including termination of non-cer-

tified third party equipment on Symmetricom's proprietary interfaces and operation outside of the prod-

uct's specifications) by Buyer or third party; or (v) the goods are shipped to any country other than that

originally specified in the Buyer's purchase order.

Goods not meeting the foregoing warranty will be repaired or replaced, at Symmetricom's option,

upon return to Symmetricom's factory freight prepaid; provided, however that Buyer has first obtained

a returnmaterials authorization number ("RMA Number") from Symmetricom authorizing such return.

The RMA Number shall be placed on the exterior packaging of all returns. Symmetricom will pay ship-

ping costs to return repaired or replacement goods to Buyer.

Symmetricom reserves the right to disallow a warranty claim following an inspection of returned prod-

uct. When a warranty claim is questioned or disallowed, Symmetricom will contact Buyer by tel-

ephone or in writing to resolve the problem.

Software - Symmetricom warrants that for a period of ninety (90) days from date of shipment by Sym-

metricom the accompanyingmedia will be free from defects in materials and workmanship under nor-

mal use. The physical media warranty does not apply to defects arising frommisuse, theft,

vandalism, fire, water, acts of God or other similar perils. Symmetricom will not be liable for any dam-

ages caused by the Buyer's failure to fulfill its responsibilities as stated above.

THE FOREGOINGWARRANTY IS IN LIEU OF ALLOTHER WARRANTIES, EXPRESSED OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF TITLE, MER-

CHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE HOWSOEVER ARISING.

Limitation of Liability - The remedies provided herein are the Buyer's sole and exclusive remedies. In

no event or circumstances will Symmetricom be liable to Buyer for indirect, special, incidental or con-

sequential damages, including without limitation, loss of revenues or profits, business interruption

costs, loss of data or software restoration, or damages relating to Buyer's procurement of substitute

products or services. Except for liability for personal injury or property damage arising from Sym-

metricom's negligence or willful misconduct, in no event will Symmetricom's total cumulative liability

in connection with any order hereunder or Symmetricom's Goods, from all causes of action of any

kind, including tort, contract, negligence, strict liability and breach of warranty, exceed the total

amount paid by Buyer hereunder. SOME JURISDICTIONS DONOT ALLOW CERTAIN LIM-

ITATIONS OR EXCLUSIONS OF LIABILITY, SO THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TOALL BUYERS.

Contact Information

Symmetricom, Inc.

Timing, Test & Measurement

3750Westwind Blvd.

Santa Rosa, CA 95403

Main: +1 (707) 528-1230

For Sales, Technical Support, and ReturnMaterials Authorization, please see

" Symmetricom Customer Assistance" on page ii.

Conventions

The conventions used in this manual are:

Note:Tips and clarifications

Warning:Actions to prevent equipment damage.

Bold:Used to show messages, menu items, etc., that appear on a computer screen. For example,

click onSubmit Changes.

Text:Used to indicate text you should enter with your keyboard, exactly as printed.

Errata

Errata are available on the CD ROM supplied with the equipment. The errata file name is “Errata.pdf”.

Table of Contents

SymmetricomCustomer Assistance ii

Copyright ii

Intellectual Property iii

Limited ProductWarranty iii

Contact Information iv

Conventions iv

Errata iv

1. PCI/PCIe TFP Hardware 1

1.1. Introduction 1

1.1.1. General Information 1

1.1.2. Key Features 4

1.1.4. Specifications and Settings 5

TimeCode Inputs 5

TimeCodeOutputs 5

PCIe Bus Characteristics 6

PCI Bus Characteristics 6

Inputs 6

Outputs 7

bc635PCI-V2 and bc637PCI-V2 Jumpers 7

bc635PCIe and bc637PCIe Jumpers 7

Environmental Specifications 8

Front Panel LED 8

GPS Antenna 8

1.2. Installation 10

1.2.1. General 10

1.2.2. Installing the Card and Antenna 11

Installing the Card 11

Changing the TFP Card Front Panel 11

Procedure for Changing the TFP Card Front Panel 11

Antenna Location and Installation (bc637PCI-V2 and bc637PCIe) 12

Quick Initial Setup 12

Permanent Antenna Installation 13

1.2.3. bc637PCI/PCIe Additional Hardware 14

1.2.4. Minimum System Requirements 14

1.2.5. Installation UnderWindows 14

1.2.6. Windows Software Development Kit 14

1.2.7. Linux Software Development Kit 15

1.2.8. Solaris Software Development Kit 16

1.2.9. Installation Under Other Operating Systems 16

1.3. Functional Description 16

1.3.1. General 16

Mode 0 (TimeCodeMode) 17

Mode 1 (Free RunningMode) 17

Mode 2 (External 1 PPS Mode) 17

Mode 3 (RTC) 17

Mode 6 (GPS) - bc637PCI-V2 and bc637PCIe 17

TimeCapture Registers 18

1.3.2. Heartbeat Output 18

1.3.3. DDS Output 19

Continuous mode 19

Fractional mode 19

Divider Source 19

Divider Mode 20

Multiplier Mode 20

1.3.4. TimeCoincidence StrobeOutput 21

1.3.5. PCI(e) Interrupts 21

1.3.6. Additional TimingOutput Signals 21

1.3.7. AM TimeCode Calibration 21

1.3.8. Calibration Procedure 22

1.3.9. Field Upgrade of Embedded Program 23

1.4. Device Registers 26

1.4.1. General 26

1.4.2. PCI Memory Map 26

1.4.3. Device Register Description 26

TFP Device Register Summary 27

TIMEREQRegister (0x00) 27

EVENTREQRegister (0x04) 27

UNLOCK1Register (0x08) 28

UNLOCK2Register (0x0C) 28

CONTROLRegister (0x10) 28

CONTROLRegister 29

ACK Register (0x14) 30

MASK Register (0x18) 31

INTSTAT Register (0x1C) 31

INTSTAT Register 31

MINSTRB (0x20) –MAJSTRB (0x24) Registers 31

EVENT2_0 (0x28) – EVENT2_1 (0x2C) Registers 32

TIME0 (0x30) - TIME1 (0x34) Registers 32

EVENT0 (0x38) - EVENT1 (0x3C) Registers 32

UNLOCK3Register (0x44) 32

EVENT3_0 (0x48) – EVENT3_1 (0x4C) Registers 32

1.4.4. TIME FORMAT 32

STATUS BITS 34

Status Bits Summary 35

STATUS: Tracking (Bit 24) 35

STATUS: Phase (Bit 25) 35

STATUS: Frequency Offset (Bit 26) 35

1.5. Dual-Port RAM Interface 35

1.5.1. General 36

Input Area 36

Output Area 36

GPS Area 36

Year Area 36

DPRAM Address and Contents 36

1.5.2. ACK Register 36

ACK Bit 0 37

ACK Bit 2 37

ACK Bit 7 37

1.5.3. TFP DPRAMCommands 37

DPRAMCommand Summary 40

Command 0x10: Set TFP TimingMode 41

Command 0x11: Set TimeRegister Format 41

Command 0x12: Set Major Time 42

Command 0x13: Set Year 42

Command 0x14: Set Periodic Output 43

Command 0x15: Set Input TimeCode Format 43

Command 0x16: Set Input TimeCodeModulation Type 44

Command 0x17: Set Propagation Delay Compensation 44

Command 0x18: Request UTC TimeData (bc637 only) 45

Command 0x19: Request TFP Data 45

Command 0x1A: Software Reset 46

Command 0x1B: Set TimeCodeOutput Format 46

Command 0x1C: Set Generator TimeOffset 48

Command 0x1D: Set Local TimeOffset 49

Command 0x1E: Program Leap Second Event 49

Command 0x1F: Request Firmware Information 49

Command 0x20: Select Clock Source 50

Command 0x21: Control Jamsync 50

Command 0x22: Force Jamsync 50

Command 0x24: Load DAC 51

Command 0x25: Set Disciplining Gain 51

Command 0x26: Request Battery Connection Status 51

Command 0x27: Synchronize RTC to External TimeData 52

Command 0x28: RTC Battery Connection Control 52

Command 0x30: Send Packet to GPS Receiver (bc637 only) 52

Command 0x31: Request Packet from GPS Receiver (bc637 only) 52

Command 0x32: Manually Request Packet from GPS Receiver (bc637 only) 52

Command 0x33: Set GPS Time Format (bc637 only) 52

Command 0x40: Observe Local Time Flag 53

Command 0x41: IEEE 1344 Daylight Saving and Local Time Flags 53

Command 0x43: Select Periodic or DDS Output 54

Command 0x44: Periodic or DDS Output Enable 54

Command 0x45: DDS Divide Select 54

Command 0x46: DDS Divide Source 55

Command 0x47: DDS SynchronizationMode Select 55

Command 0x48: DDS Multiplier Value 56

Command 0x49: DDS Period Value 56

Command 0x4A: DDS TuningWord 56

Command 0x4F: PCI Firmware Part Number (request only) 57

Command 0xF6: TFP Model Identification (request only) 57

Command 0xFE: TFP Serial Number (request only) 58

1.6. Inputs andOutputs 58

1.6.1. TFP I/O Connector Signals 58

1.6.2. bc635PCIe and bc637PCIe Accessories 59

Signal Breakout Kit 59

Breakout Cables 61

Timing Input/Output Breakout cable and Patch Panel BNC Map 63

1.7. GPS Receiver Interface 63

1.7.1. General 63

1.7.2. GPS TimingMode (Mode 6) Characteristics 64

1.7.3. CommunicatingWith the GPS Receiver 64

Sending GPS Data Packets to the GPS Receiver 64

Receiving GPS Data Packets from theGPS Receiver 65

Retrieve Packet from GPS Receiver (Command 0x31) 65

Manually Request Packet from GPS Receiver (Command 0x32) 67

1.7.4. Position Fix Modes 68

Position Fix Mode 0 68

Position Fix Mode 1 68

Position Fix Mode 3 and 4 68

1.8.5. GPS Default Parameters 68

Set Operating Parameters (GPS packet 0x2C) 69

Set High-8 / High-6Mode (GPS packet 0x75) 69

Set I/OOptions (GPS packet 0x35) 69

1.9. Legacy and New Generation Cards 69

1.9.1. PCI Bar Mapping 70

1.9.2. Differences Between Versions -U and New Generation Cards 70

2. Windows Application Programs 72

2.1. bc635PCIcfg.exeWindowsApplication Program 72

2.1.1. General 72

2.1.2. Quickstart Guide to Operating bc635PCIcfg.exe 72

2.1.3. bc637PCIcfg ProgramMenu Interface 74

File Menu 74

TimeMenu 75

TimeCodeMenu 78

Signals Menu 79

HardwareMenu 81

Special Menu 82

PCI Menu 85

HelpMenu 86

2.2. bc637PCIcfg.exeWindowsApplication Program 87

2.2.1. General 87

2.2.2. Quickstart Guide to Operating bc637PCIcfg.exe 87

2.2.3. bc637PCIcfg.exe ProgramMenu Interface 88

File Menu 88

TimeMenu 90

Status Menu 91

ModeMenu 91

PositionMenu 92

Options Menu 92

Request Menu 93

SendMenu 94

Reset Menu 95

HelpMenu 96

2.3. TraytimeWindowsApplication Program 97

2.3.1. Installation 97

2.3.2. Functionality 97

2.3.3. TrayTimeDialogWindows 98

MainWindow 98

TrayTime Setup - Status Window 99

TrayTime Setup - ConfigurationWindow 100

3. Windows SDK 101

3.1. Introduction 101

3.1.1. General 101

3.1.2. Features 101

3.1.3. Overview 101

3.2. Release Notes 102

Driver 102

Installation 102

Driver Packages 103

64-Bit Applications 103

DLL File 103

Software Developers Kit 103

TrayTime.exe 103

API Calling Convention 104

NoSync Read Time Functions 104

3.3. Installation 104

Hardware and driver installation 104

Software developer's kit installation 104

Configuration 105

Test installation 105

Project creation 105

Microsoft Visual C++ 6.0 105

Microsoft Visual Studio 2008 106

3.4. Library definitions 106

General 106

Windows SDK Command Finder 107

Functions 109

4. Linux SDK 139

4.1. Introduction 139

4.1.1. General 139

4.1.2. Features 139

4.1.3. Overview 139

4.2. Installation 140

4.2.1. Hardware installation 140

4.2.2. Software installation 140

4.2.3. Linux kernel versions supported 142

4.2.4. Test Installation 142

4.2.5. Using the bc63xPCIcfg.exe program 143

Select Operational Mode 144

Request Time Settings 145

Select Timecode Decoding Format 146

Request Timecode Settings 146

Select TimecodeOutput Format 147

Select the TimeRegister Format 148

Read Current Time 149

Set Current Time 150

Set Current Year 150

Request Model Information 152

DDS Frequency and New TimeCodes 152

Compatibility with Old bc635PCI or bc637PCI Card 155

Uninstall Instructions 155

4.3. Library Definitions 155

4.3.1. General 155

4.3.2. Functions 156

4.4. Programming Examples 186

4.4.1. General 186

4.4.2. Starting and Stopping the Device 186

4.4.3. Reading TimeOnDemand 187

Reading in Binary Time Format 187

Reading in Decimal Time Format 188

3.4.4. Setting theTFP Mode 188

4.4.5. Setting Interrupts 188

5. Solaris SDK 191

5.1. Introduction 191

5.1.1. General 191

5.1.2. Features 191

5.1.3. Overview 191

5.2. Installation 191

5.2.1. Hardware Installation 191

5.2.2. Software Installation 192

5.2.3. Test Installation 196

5.2.4. Driver Compilation 197

5.3. Driver Function Definitions 199

5.3.1. General 199

5.3.2. Functions 199

5.4. Example Program 207

5.4.1. General 207

5.4.2. Program Functions 208

4.4.3. Example 1: GPS Packet 46 - Health Packet Sample 217

4.4.4. Example 2: 1PPS Interrupt Sample 217

Glossary 219

Index 222

1. PCI/PCIe TFP Hardware

1.1. Introduction

1.1.1. General Information

The Symmetricommodel bc635PCI-V2, bc637PCI-V2, bc635PCIe, and bc637PCIe Time and

Frequency Processors (TFP) are high performance plug-in cards used for precise time syn-

chronization of the host computer over the PCI or PCIe bus.

Note that these Time and Frequency Processors will be referred as “TFP” or “TFPs” for the remainder

of the document.

The PCI TFP cards operate at 33MHz and are compatible with PCI Local Bus Specification Revision

2.3. The PCI products support both the 3.3V and 5V signaling environments defined by the PCI Local

Bus Specification. They are considered Universal add-in cards that are capable of detecting the sig-

naling environment and adapting themselves to that environment.

The PCIe TFP cards offer similar features to the PCI cards. The PCIe cards use a single lane and

support full 2.5 Gbps in either direction.

The TFP products may be used in either Generator mode or SynchronizedGenerator mode, supplying

precise time (100's nanoseconds through thousands of years) to the host computer. When the card is

operating as a SynchronizedGenerator, the output signals are synchronized to the timing reference.

The card phase locks to the timing reference and controls the on-board oscillator to remove frequency

errors. If the timing reference is lost, the card continues to increment time and output timing signals

based upon the card's 10MHz oscillator frequency (flywheeling).

There are eight separate TFP products supported by this manual:

Model Description
1 bc635PCI-V2 PCI Time & Frequency Processor with TCXO

2 bc637PCI-V2 GPS Synchronized, PCI Time & Frequency Processor with TCXO

3 bc635PCI-V2-OCXO PCI Time & Frequency Processor with OCXO

4 bc637PCI-V2-OCXO GPS Synchronized, PCI Time & Frequency Processor with OCXO

5 bc635PCIe PCI Express Time & Frequency Processor with TCXO

6 bc637PCIe GPS Synchronized, PCI Express Time & Frequency Processor with TCXO

7 bc635PCIe-OCXO PCI Express Time & Frequency Processor with OCXO

8 bc637PCIe-OCXO GPS Synchronized, PCI Express Time & Frequency Processor with OCXO

- 1 -

1. PCI/PCIe TFP Hardware

Images of bc635PCI-V2 and bc635PCIe follow

Figure 1-1: Model bc635PCI-V2 Time and Frequency Processor

GPS Antenna A: SMB Antenna Connector

B: J1Module I/O 15 pin D-sub connector

Figure 1-2: Model bc637PCI-V2 (GPS option shownwith GPS antenna)

All sections of this manual are applicable to all boards except where noted.

- 2 -

1.1. Introduction

Images of bc635PCI-V2 and bc635PCIe follow::

Figure 1-3: Model bc635PCIe Time and Frequency Processor

GPS Antenna

P/N 142-614-50

A: SMB Antenna Connector

B: J1Module I/O 15 pin D-sub connector

Figure 1-4: Model bc637PCIe (GPS option shownwith GPS antenna)

All sections of this manual are applicable to all boards except where noted.

- 3 -

1. PCI/PCIe TFP Hardware

1.1.2. Key Features

n All modes of operation are supplemented by flywheel operation. If the synchronization source is

lost, the TFP will continue to function at the last known reference rate. The following operational

modes are supported, and are distinguished by the reference source.

Mode Source of Synchronization
0 TimeCode - IRIG A, B, G, E, IEEE 1344, NASA 36, XR3 & 2137

1 Free Running (Generator Mode) - 10MHz Selected Reference (Internal or External)

2 1 PPS - External One Pulse Per Second Input

3 RTC-Uses battery backed on-board real time clock I.C.

4-5 Reserved

6 GPS (bc637) - GPS Antenna/Receiver

n Timemay be captured in four independent sets of time capture registers. The default time format

is provided in binary form (UNIX seconds through 100 nanoseconds). The TFP Device Register

Summary and register formats are outlined in "TFP Device Register Summary" on page 27.

n In synchronized generator mode, the TFP uses the selected reference source to discipline either

the standard on-board TCXO (Temperature Compensated Crystal Oscillator), optional on-board

OCXO (Oven Controlled Crystal Oscillator) or external 10MHz oscillator. The 10MHz oscillator

drives all timing functions and outputs on the card. 10MPPS and 1 PPS signals derived from the

10MHz oscillator are provided as outputs, among others. The advantage of the OCXO is better

holdover (should the synchronization source be lost).

n The TFP generates IRIG A, B, G, E, IEEE 1344, NASA 36, XR3 and 137 time codes. Amplitude

modulated and DC level shift formats are produced simultaneously.

n A Programmable Periodic (also known as Heartbeat) output is provided. The output frequency is

programmable andmay be synchronized to the TFP 1 PPS signal. The Periodic output pro-

gramming is discussed in"1.3.2. Heartbeat Output" on page 18. This signal may be internally con-

nected to the Event Input to capture the time associated with the Programmable Periodic edge.

The Event Input may be configured via the CONTROLRegister as described in "CONTROLReg-

ister (0x10)" on page 28. Note that the Periodic square wave output and the DDS square wave out-

put share the same output driver where either signal may be selected for output on J1 pin 15.

n A DDS (also known as frequency synthesizer) output may be selected in place of the periodic

rate generator's output. The DDS offers amuch wider frequency range than the Programmable

Periodic. The DDS is discussed inmore detail in "1.3.3. DDS Output" on page 19. Note that the

DDS and the Programmable Periodic signals are capable of generating interrupts. Caution should

be taken when using either of these sources with a rate that exceeds the computer's ability to

service the interrupts.

n A TimeCoincidence Strobe output is provided. The Strobe is programmable from days through

microseconds. The strobe also has an each secondmode (referred to in this manual as Minor

- 4 -

1.1. Introduction

.

n One set of time capture registers is used for event time capture. Time is captured on the rising or

falling edge (user programmable) of the Event Input signal provided to the TFP via the J1 I/O con-

nector or from the Programmable Periodic Output signal. The Event Input configuration is manip-

ulated via the CONTROLRegister as described in "CONTROLRegister (0x10)" on page 28.

n Two sets of event capture registers are available from dual-purposed input pins. J1 pin 10may be

used as the DCLS TimeCode Input or as the Event2 input. J1 pin 14may be used as the Exter-

nal 1PPS Input or as the Event3 input.

n Sevenmaskable interrupt sources are supported. All interrupt sources may be polled. Interrupts

are discussed inmore detail in "MASK Register (0x18)" on page 31.

Note: The bc635PCI-V2 and bc637PCI-V2 do not provide interrupts at system start-up and therefore

do not support the PCI Local Bus Specification Revision 2.3 feature of software disable of interrupts

at start-up.

1.1.4. Specifications and Settings

Time Code Inputs

Formats IRIG A, B, G, E, IEEE 13441, NASA 36, XR3 and 2137 (AM/DCLS)

Carrier Range ± 5 PPM

Time Accuracy2 < 5 μsec. (AM with carrier frequencies 1 kHz or greater)

< 1 μsec. (DCLS)

AMModulation Ratio 2:1 to 4:1

AM Input Amplitude 1 to 8 Vp-p

AM Input Impedance 5 kΩ, AC Coupled

DCLS Input 5V HCMOS, >2V high, <0.8V low

1 IEEE 1344 compliance - The translator processes the 27 control function bits of IRIG B time code

as set forth in IEEE 1344.

2May require a calibration to attain this accuracy. See "1.3.7. AM TimeCode Calibration" on page 21.

Time Code Outputs

Formats IRIG A, B, G, E, IEEE 1344, NASA 36, XR3 & 2137 (Modulated/DCLS)

Modulation Ratio 3:1 ± 10%

Output Amplitude 3V p-p ±10% (fixed) into 50 Ω

DC Level Shift 5V HCMOS, >2V high, < 0.8V low into 50 Ω

- 5 -

1. PCI/PCIe TFP Hardware

PCIe Bus Characteristics

Specifications Single Lane, 2.5 Gbps each direction

Size Single-Width 6.6” x 2.7” (Low Profile)

Interrupts Auto Configurable

Power (bc635PCIe) +3.3V@ 400mA, +12V@ 250mA

Power (bc637PCIe) +3.3V@ 400mA, +12V@ 300mA

Power (bc635PCIe-OCXO)
+3.3V@ 400mA, +12V@ 350mA, (0.5 A@ start up)

Power (bc637PCIe-OCXO)
+3.3V@ 400mA, +12V@ 400mA, (0.6 A@ start up)

PCI Bus Characteristics

Specifications PCI local bus™ 2.2 compliant, 2.3 compatible, PCI-X compatible

Size 4.2” x 6.875” (Full Height)

Interrupts Automatically Assigned (PnP)

Power (bc635PCI-V2) +5V@ 700mA, +12V@ 50mA

Power (bc637PCI-V2) +5V@ 800mA, +12V@ 50mA

Power (bc635PCI-V2-OCXO)
+5V@ 800mA, (1.1 A@ start up), +12V@ 50mA

Power (bc637PCI-V2-OCXO) +5V@ 900mA, (1.2 A@ start up), +12V@ 50mA

Inputs

Event Inputs (1,2,3)
5V HCMOS,>2V high, < 0.8V, zero latency,

Rising or Falling Edge Triggered, 20 nS min. width, 250 nS min. period

External 1 PPS
5V HCMOS, >2V high, < 0.8V low

Rising EdgeOn Time, 20 nS minimum width

External 10MHz Digital 40% to 60% Duty Cycle (or) Sine wave, 0.5 to 8Vp-p, >10k Ω

- 6 -

1.1. Introduction

Outputs

1 PPS
5V HCMOS, >2V high, < 0.8V low into 50 Ω , Rising EdgeOn Time, 60 μS Pos-

itive pulse

Periodic
5V HCMOS, >2V high, < 0.8V low into 50 Ω , Rising EdgeOn Time (selectable

on time control), <1 Hz to 250 kHz, square wave

DDS
5V HCMOS, >2V high, < 0.8V low into 50 Ω , Rising EdgeOn Time (selectable

on time control), 1/1e7 - 1e8 Hz, <2 nS jitter p-p, square wave

Strobe 5V HCMOS, >2V high, < 0.8V low into 50 Ω , 1 μS Positive pulse, variable delay

1, 5, 10MHz clock
5V HCMOS, >2V high, < 0.8V low into 50 Ω (see "1.3. Functional Description"

on page 16 for signal characteristics)

TimeCode DCLS 5V HCMOS, >2V high, < 0.8V low into 50 Ω

External 10MHz

Oscillator DAC
Jumper selectable 0-5VDC or 0-10VDC into 1kΩ

bc635PCI-V2 and bc637PCI-V2 Jumpers

The following is a list of the hardware jumpers on the bc635PCI-V2 and bc637PCI-V2 boards:

n JP1 is a 2mm jumper that is the RTC battery connect switch. The RTC battery is a non-recharge-

able lithium cell with 48mAh capacity. When the card is not powered and the RTC battery has not

been disabled, the RTC draws about 20 uA which will provide >100 days of RTC operation. Long-

term storage of the card should be done only after issuing the Disconnect RTC Battery command

or by themanual disconnection of the jumper on JP1. The factory configuration places the 2mm

J1 jumper ON.

n JP2 is the 1, 5, 10MPPS or 10MHz oscillator select switch. The factory configuration places the

2mm JP2 jumper on pins 1-2 which will allow for the software selection of 1, 5 or 10MPPS for the

output on J1 pin 13. When the jumper is in the 2-3 position, the output on J1 pin 13 is a buffered

signal from the 10MHz oscillator.

n JP3 is the DAC voltage range switch. When the jumper is OFF, the DAC voltage is 0-5 VDC;

whenON the voltage is 0-10 VDC. Both oscillators that are offered for this board have 0-5 VDC

control voltage ranges, therefore the 2mm jumper is not factory installed. If an external oscillator

requires a 0-10 VDC control voltage range, a 2mm jumper should be placed on JP3.

n JP4 is for factory use only.

bc635PCIe and bc637PCIe Jumpers

The following is a list of the hardware jumpers on the bc635PCIe and bc637PCIe boards:

n JP1 is a 2mm jumper that is the RTC battery connect switch. The RTC battery is a non-recharge-

able lithium cell with 48mAh capacity. When the card is not powered and the RTC battery has not

been disabled, the RTC draws about 20 uA which will provide >100 days of RTC operation. Long-

term storage of the card should be done only after issuing the Disconnect RTC Battery command

or by themanual disconnection of the jumper on JP1. The factory configuration places the 2mm

J1 jumper ON.

- 7 -

1. PCI/PCIe TFP Hardware

n JP3 is the DAC voltage range switch. When the jumper is OFF, the DAC voltage is 0-5 VDC;

whenON the voltage is 0-10 VDC. Both oscillators that are offered for this board have 0-5 VDC

control voltage ranges, therefore the 2mm jumper is not factory installed. If an external oscillator

requires a 0-10 VDC control voltage range, a 2mm jumper should be placed on JP3.

n JP4 is for factory use only.

Environmental Specifications

Temperature Operating 0°C to +70°C (32°F to +158°F)

Non-Operating -30°C to +85°C (-22°F to +185 °F)

Relative Humidity Operating/Non-Operating To 95% RH, non-condensing

Front Panel LED

LED indication LED Definition
1 Off No power

2 Red No valid reference

3 Orange Valid reference but not locked to it yet

4 Green Freerunmode

5 Green Blinking Locked to a timing reference

GPS Antenna

To operate in the GPS SynchronizedGenerator mode, the bc637models use an external antenna.

The standard antenna kit supplied with thesemodels includes the antenna, 50 feet (15.24meters) of

coaxial cable and antennamounting hardware.

- 8 -

1.1. Introduction

Figure 1-5: Antenna parts

The antenna is housed in completely waterproof packaging designed to withstand the elements.

When the four UNC 4-40 screws are loosened, the antennamodule detaches as shown below, expos-

ing the TNC connector.

Figure 1-6: Antenna with TNC connector

Warning: Models bc637PCI-V2 and bc637PCIe supply +5 VDC to the antenna. Connection to an

alternate antennamay damage the board and/or antenna functionality.

- 9 -

1. PCI/PCIe TFP Hardware

General Specifications for the Antenna

Operating Temperature -40°C to +85°C (-40°F to +185°F)

Storage Temperature -40°C to +100° C (-40°F to +212°F)

Humidity 100% condensing

Power 30mA@ 5V (supplied by card)

Cable Specifications for the Antenna Cable

Type RG-59 (Belden 9104)

Length 50 feet (15.24meters)

Weight 1.2 lb. (0.545 kg)

Humidity All weather, outdoors

Connectors Type TNC male to BNC male

Cable lengths from 150 feet (45meters) to 300 feet (90meters) require an in-line GPS Signal Amplifier

(P/N 150-200).

Cable lengths from 300 feet (90meters) to 1,500 feet (457.2meters) require the antenna Down/Up

Converter option, part number 142-6150. Refer to the optional 142-6150 Down/Up Converter antenna

manual for specifications.

Antenna and Down/Up Converter units aremounted on a 12-inch (30.48 cm) long PVC mast with 3/4-

inch (1.9 cm)Male Pipe Thread (MPT) on both ends.

1.2. Installation

1.2.1. General

This section contains TFP installation instructions and information regarding operatingmodes and the

use of registers to configure the card. Models bc637PCI-V2 and bc637PCIe have the additional fea-

ture of GPS mode that will automatically synchronize the card to UTC time.

Installation of PCI/PCIe boards is quite a bit simpler than inmost bus architectures due to the fol-

lowing factors:

n Geographical addressing, which eliminates the need for DIP switches and jumpers normally

required to select a “base address” or interrupt level for plug-in modules.

n Auto configuration that allows the host computer to read the device ID, and other configuration

information directly from the PCI Configuration Registers.

- 10 -

1.2. Installation

n The TFP is shipped with software suitable for use with Linux, Solaris andWindows. The kit

includes drivers for low-level access, as well as software programs for configuring and accessing

the card.

Installation is as easy as choosing a vacant PCI or PCIe slot, plugging in the Symmetricom Time and

Frequency Processor (TFP) and installing the device driver. Be sure to consult the user doc-

umentation that camewith your particular workstation for any specific installation instructions. In addi-

tion, to protect the card, use good ESD protection practices when installing the card.

1.2.2. Installing the Card and Antenna

Installing the Card

n Unpack the card and carefully inspect it for shipping damage. Report any damage to the carrier

immediately.

n Record the card's serial number. The serial number has eight numerals, for example 08190018.

The first two are the last two numbers of the year. The second two is the week number of the

year. The final four is a unique number for the card.

n With the computer's power turnedOFF, if the TFP front panel height is correct install and secure

the card in an empty card slot. If a low-profile front panel needs to be attached to the TFP, follow

the instructions below.

Changing the TFP Card Front Panel

The bc63xPCI-V2 and bc63xPCIe TFP card is shipped with a full-height front panel attached to it. A

low-profile front panel is included as an alternative for low-profile situations. If the low-profile front

panel option is required use the following procedure. Note, the following three tools will be required to

change the front panel:

l 3/16 inch wrench
l 1/4 inch wrench
l Phillip's #1 screwdriver

Standard ESD precautions should be followed when handling the TFP printed circuit board.

Procedure for Changing the TFP Card Front Panel

The TFP card is attached to the front panel in three places, the GPS RF connector, the 15 pin D-sub-

connector and a single Phillip's #1 screw. To change the front panel, do the following:

1. Remove the two nuts and washers from the backs of the 15 pin D-sub connector (3/16

wrench).
2. Remove the two standoff screws from the front panel side of the 15 pin D-sub connector (3/16

wrench).
3. Remove the retaining nut and washer from theGPS RF connector (1/4 wrench).
4. Remove the Phillip's #1 screw that secures the TFP card directly to the front panel.

- 11 -

1. PCI/PCIe TFP Hardware

5. Set the full-height front panel aside and pick up the low-profile front panel.
6. Secure the GPS RF connector loosely to the front panel with its nut and washers.
7. Secure the TFP card loosely to the low-profile front oanel with the Phillip's #1 screw.
8. Secure the 15 pin D-sub connector to the front panel with its two standoff screws.
9. Secure the 15 pin D-sub connector to the front panel with its two retaining lock washers and

nuts.
10. Tighten the GPS RF connector front panel retaining nut.
11. Tighten the Phillip's #1 screw connecting the TFP card directly to the front panel.

Antenna Location and Installation (bc637PCI-V2 and bc637PCIe)

When selecting a site for the antenna, find an outdoor location that provides full 360-degree visibility

of the horizon. In most cases, this means locating the antenna as high as possible. Any obstruction

will degrade unit performance by blocking satellite signals. Blocked signals can significantly increase

the time for satellite acquisition, or prevent acquisition all together.

The installation instructions are divided into “Quick Initial Setup” and “Permanent Installation” sec-

tions. This is designed to firstly get the GPS unit up and running as quickly as possible, and secondly

to verify its operation and to become familiar with the equipment, We recommend that new users fol-

low the “Quick Initial Setup” instructions first before proceeding to a permanent installation.

Quick Initial Setup

Connect the antenna cable to the unit and to the antenna. Simply run the antenna outside the building

or set it on a window sill. Depending on the lead content or coating on the glass, it may be necessary

to go outside. Turn on the unit and verify its operation.

- 12 -

1.2. Installation

Permanent Antenna Installation

A: Securemast to pole or pipe

B: Securemast to mounting surface with pipe straps.

n Woodmounting - Drill hole with #43 bit and install with a #10 wood screw.

n Drywall/Masonry - Drill hole with 1/4 “bit, Insert #10 screw anchor. Then install the #10 wood

screws.

C: Shows the cable connector relative to the antenn. The antenna is shown separated from antenna

mast. In reality, the cable is connected to the antenna and themast is firmly attached to the antenna.

Do not disconnect the pipe from the antenna assembly. To gain access to the TNC antenna input

connector, untighten the four captive UNC screws that secure the two parts of the antenna.

Figure 1-7: Permanent Antenna Installation

Mast topmounting is the preferredmountingmethod. Special brackets are provided tomount the

antenna to a pipe or the peak of a building. The antennamountingmast should be 2-inch (5.08-cm)

water pipe or conduit. Themast must be rigid and able to withstand high winds without flexing. Guy

wires may be used to stabilize amast longer than 10 ft. (3.048m).

- 13 -

1. PCI/PCIe TFP Hardware

1.2.3. bc637PCI/PCIe Additional Hardware

TheGPS antenna equipment included with the product and described in this manual consists of the

following:

n Onewide-range 5-12 VDC GPS L1 antenna

n One 50 ft. length of Belden 9104 coaxial cable with BNC(m) and TNC(m) connectors

n SMB to BNC adaptor is included

Optional cable lengths and accessories are available. Please note the following when setting up

longer cable runs:

Note: Using Belden 9104, themaximum cable length without amplification is 150 feet . Using Belden

9104, themaximum cable length using the optional in-line amplifier is 300 feet. For cable runs longer

than 300 feet, an optional GPS Down/Up Converter kit is available.

1.2.4. Minimum System Requirements

n PC with one free PCI or PCIe slot

n 25MB disk space

1.2.5. Installation Under Windows

1. With the PC turned off, insert the Symmetricom TFP in an open slot. Use good ESD pro-

tection practices when installing the card.
2. Boot the PC. After login, Windows may prompt you to install newly found hardware. Dis-

regard/cancel this dialog box.
3. Insert the bc63xPCIe-V2 product CD and select bc635PCIcfg or bc637PCIcfg to install

depending on the type of TFP you inserted into your PC. The bc637PCIcfg.exe demonstrates

the board's GPS functionality.Follow the instructions shown on the screen to finish the instal-

lation. The computer will reboot at the end of the installation.
4. If Auto-Run is disabled, manually install the software by browsing to theWindows directory on

the product CD. Click on bc635PCIcfg_Setup.exe or bc637PCIcfg_Setup.exe depending on

the type of TFP you inserted into your PC. Follow the instructions shown on the screen to fin-

ish the installation. The computer will reboot at the end of the installation.
5. After the computer reboots, launch the TFP configuration software bc635PCIcfg or

bc637PCIcfg to begin communication with the card.
6. If no time is displayed, or if you are prompted

1.2.6. Windows Software Development Kit

To developWindows based applications for Symmetricom TFP cards, youmust install the bc63x

Windows Software Developer’s Kit included on the bc63xPCIe-V2 product CD. You can insert the

- 14 -

1.2. Installation

product CD and use the SDK installation button to install the SDK or browse to theWindows direc-

tory and run bc635_637PCI_SDK_Setup.exe.

The bc63x Windows SDK is a full featured software development kit containing functions necessary

to control and read the time from the card. The example application programs were originally devel-

oped under Microsoft Visual C++ 6.0 and ported to support both Visual C++ 6.0 and Visual Studio

2008.This allows the user to create customized applications to use with the Symmetricom TFP cards

with aminimum amount of time and effort. The SDK is an easy to integrate and highly reliable alter-

native to writing lower level code to access a TFP card’s registers directly. The API functions make

interfacing to a TFP card straight forward, keeping software development effort focused on the end

user applications.

TheWindows SDK supports both 32 and 64-bit Windows operating system fromWindows XP

throughWindows 7. However, the SDK does not support Windows 2000, NT 4, or any Windows 95

basedWindows operating system (95, 98 andMe). The target application development environment

is Microsoft Visual Studio. The SDK includes .h, .lib, and .dll files for customer application devel-

opment. The SDK also includes source code for the bc635PCIcfg, bc637PCIcfg and the TrayTime

programs as well as other example programs.

Customers using the previous version of the SDK, which wewill now refer to as the "Legacy bc635

SDK software”, can continue to use that driver and any application software previously written using

Legacy bc635 SDK software with the bc635PCIe.

For customers wanting to run previously written software with the new 32/64 bit driver, you will need

to recompile your applications with the new driver and .dll to support operating systems fromWin-

dows XP throughWindows 7. See "3.2. Release Notes" on page 102.

1.2.7. Linux Software Development Kit

To develop Linux based applications for Symmetricom TFP cards, youmust install the bc63x Linux

Software Developer’s Kit included on the bc63xPCIe-V2 product CD. Browse to the Linux directory

and follow instructions in the readme file to install the Linux SDK.

The Linux SDK is a full featured software development kit (SDK) containing functions necessary to

control and read the time from the card. This SDK allows the user to create customized applications

to use with the Symmetricom TFP cards with aminimum amount of time and effort. The SDK is an

easy to integrate and highly reliable alternative to writing lower level code to access a TFP card’s reg-

isters directly. The API functions make interfacing to a TFP card straight forward, keeping software

development effort focused on the end user application.

The SDK supports both 32-bit and 64-bit Linux 2.4 and 2.6 kernels. The target application devel-

opment environment is GNU gcc/g++. The SDK includes .h, .lib and .so files for customer application

development. The SDK also includes source code for the bc63xPCIcfg example program. The exam-

ple program uses discrete functions to access TFP features. This allows developers to copy and

paste useful code into their own applications so that they can keep development effort focused on the

end user applications.

- 15 -

1. PCI/PCIe TFP Hardware

1.2.8. Solaris Software Development Kit

To develop Solaris based applications for Symmetricom TFP cards, youmust install the bc63x

Solaris Software Developer’s Kit included on the bc63xPCIe-V2 product CD. Browse to the Solaris

directory and follow instructions in the readme file to install the Solaris SDK.

The SDK supports 64-bit Solaris 8 to 10 on both SPARC and x86_64 platform. The target application

development environment is Solaris C/C++ compiler or GNU gcc/g++. The SDK includes source

code for the driver stfp and the bc63xPCIcfg example program. The example program shows how to

use discrete functions and ioctl code to access TFP features. This allows developers to copy and

paste useful code into their own applications so that they can keep development effort focused on the

end user applications.

1.2.9. Installation Under Other Operating Systems

Usage of the TFP under other operating systems may require a special driver for the device. Please

contact Symmetricom for source code availability. With the wide variety of machines and operating

systems that support the PCI(e) bus, it is not practical for Symmetricom to develop drivers for use in

all of these environments.

1.3. Functional Description

1.3.1. General

The primary function of the TFP is to provide precise time to the host computer across the PCI or

PCIe bus. The TFP can derive time from any one of the sources listed in "1.1.2. Key Features" on

page 4.

In all but the Free Runningmode of operation, the TFP synchronizes its 10MHz oscillator to an input

reference. The TFP achieves synchronization from the input reference and disciplines the 10MHz

oscillator such that the locally generated 1 PPS signal is matched in phase and frequency to the input

reference.

Once synchronization is achieved, the TFP is able tomaintain time even if the reference source is

lost (though some timing drift will occur). This is referred to as flywheeling or holdover. If available,

the TFP will obtain major time (days, hours, minutes, and seconds) from the input reference. In Time

- 16 -

1.3. Functional Description

Code andGPS Mode, this major time is readily available, but in the Free Running and External 1 PPS

Modes, major time is not available andmust be set manually by the user. The TimingMode is

selected via the dual-port RAM interface as described in "Command 0x10: Set TFP TimingMode" on

page 41, using command 10.

Mode 0 (Time Code Mode)

In TimeCodeMode, the TFP derives time from the currently selected input time code. The TFP will

accept time code in either amplitudemodulated (AM) or DC Level Shift (DCLS) form. AM time code is

a sinusoidal analog signal that is amplitudemodulated with the time data. DCLS is simply the envel-

ope of themodulated time code and is a digital signal. Most time codes provide bothmajor time (days,

hours, minutes, and seconds) andminor time (subseconds) to the card. Some IRIG time codes (e.g.,

IEEE1344) andGPS (if equipped) provide year information.

Mode 1 (Free Running Mode)

In Free RunningMode, no external timing source is used and the TFP oscillator is allowed to free-run.

The user must set major timemanually. TheMajor Time is selected via the dual port RAM interface

as described in "Command 0x11: Set TimeRegister Format" on page 41, using command 11. Free

Runmode allows the user to perform timing tests when an external timing source is unavailable.

Mode 2 (External 1 PPS Mode)

In External 1 PPS Mode, the TFP synchronizes its oscillator to a user-supplied 1 PPS signal. The

user must set major timemanually. TheMajor Time is selected via the dual-port RAM interface as

described in "Command 0x11: Set TimeRegister Format" on page 41 Chapter 1.5, using command

11. The External 1PPS Modewill not indicate locked status to the External 1PPS reference without

first being synchronized to a time reference that includes time of day information (TimeCode or

GPS). Please note that the TFM will always synchronize to the External 1PPS when selected, but if

the card has not been previously synchronized by TimeCode or GPS, the Tracking, Phase and

Frequency Status information will not be valid in External 1PPS mode.

Mode 3 (RTC)

In the Real TimeClock (RTC)mode, the TFP receives its major time via the RTC and operates as a

Generator (no input reference).

Mode 6 (GPS) - bc637PCI-V2 and bc637PCIe

In GPS Mode, like TimeCodeMode, bothmajor andminor times are derived from the timing source.

In addition to time, other information is available from theGPS system such as position and velocity.

This mode requires the use of a GPS antenna that has an unobstructed view of the sky. Note that the

antenna location is important because theGPS receiver must initially acquire and track at least four

- 17 -

1. PCI/PCIe TFP Hardware

satellites to obtain accurate time for the TFP card. If however, the user's position is accurately

known, or has been previously determined, the position information can be sent to the TFP’s GPS

receiver, enabling GPS lock from just one satellite.

Time Capture Registers

The TFP supports four independent sets of time capture registers. Each set consists of two 32-bit

wide registers that hold both themajor andminor time. One set of registers, called TIME0 and TIME1,

support time on demand across the PCI bus. Time is captured in these registers whenever the user

accesses a special time request register (TIMEREQ). The captured time is held until a subsequent

access of the TIMEREQ register. Valid time can be read from the TIMEx registers immediately fol-

lowing the access of the TIMEREQ register. "1.4.3. Device Register Description" on page 26

describes the available time formats used on the TFP.

The second set of time capture registers, called EVENT0 & EVENT1, are identical in format to the

TIMEx registers. Time is captured in these registers whenever the user accesses the special time

request register labeled EVENTREQ. Additionally, the EVENTx registers can be set up to capture

time in response to either the Event Input or the Programmable Periodic Output (see next section).

These device registers are described inmore detail in "1.4.3. Device Register Description" on page

26.

The third and fourth set of time capture registers, EVENT2_0, EVENT 2_1, EVENT3_0, and

EVENT3_1 are identical in format to the TIMEx registers, but they are only usable with external event

sources. The inputs to the Event2 and Event3 time capture registers are on dual-purposed input pins,

where usually one or other of the function is chosen.J1 pin 10may be used as the DCLS TimeCode

Input or as the Event2 input. J1 pin 14may be used as the External 1PPS Input or as the Event3

input.

1.3.2. Heartbeat Output

The Heartbeat output is a legacy function. The DDS output described in the next section is a superior

frequrency synthesizer. The Heartbeat Output (also known as Programmable Periodic or PPO)

allows the user to configure a repetitive digital output synchronized with the timing source. The PPO

may optionally be synchronized to the TFP's 1 PPS signal when the Periodic Output frequency is an

integer value. If PPO is not an integer value and Synchronous Mode is used, the last Periodic Output

cycle before the 1 PPS edge will not be square.

The PPO signal is generated by dividing down a 1MHz clock, synchronous to the 10MHz oscillator.

The periodic output frequency ranges from 250 kHz (n1 = n2 = 2) to less than 1 Hz. The frequency is

determined by the relationship:

Frequency = 1,000,000 / (n1 * n2) Hz

Where:

n1 : divider 1 (range = 2-65535)

n2 : divider 2 (range = 2-65535)

- 18 -

1.3. Functional Description

Setting the periodic output frequency to less than 1 Hz and using Synchronous Mode will cause the

periodic output to be held at a logic high level. When a rate below 1PPS is desired, Asynchronous

Modemust be used. Values of 0 or 1 for either n1 or n2 will also cause the periodic output to be held at

a logic high level in either Synchronous or Asynchronous Modes.

Note that the PPO signal is multiplexed with the DDS signal, where one or the other signal is selected

for output on the 15-pin I/O connector pin 15.

1.3.3. DDS Output

This DDS circuit is a frequency synthesizer that provides a square wave output with a frequency res-

olution of 0.03125 (1/32) Hz. Refer to manual section 1.4.5 on Digital Outputs for specifications.

The formula for setting the desired frequency is:

n Frequency x 32 = DDS tuning word value.

The DDS circuit has two synchronizationmodes, Continuous and Fractional.

Continuous mode

Continuous mode synchronizes the DDS circuit each second, maintaining rising edge timing to the

card's on-time 1PPS signal. Continuous modemay be used when the DDS is set for an integer rate.

Fractional mode

Fractional mode allows the DDS circuit to generate a non-integer frequency after first being syn-

chronized to the card's on-time 1PPS signal. Note that the DDS circuit is always re-synchronized to

the 1PPS rising edge when a new frequency is chosen.

DDS fractional frequency example:

n Desired frequency:10,491,426.56 Hz

n Desired frequency x 32: (example 10,491,426.56 x 32 = 335,725,649.92 Hz)

n Rounded to integer 335,725,650

n Actual DDS frequency10,491,426.5625 Hz

This is the closest the DDS can get to the desired frequency with 1/32 Hz resolution.

Divider Source

The DDS circuit also includes 7 decades of divider that may be used. The DDS frequency is passed

through a divider circuit before being output. The divider's input sourcemay be selected to be one of

the following:

1. DDS
2. Multiplier (DDS x multiplier)
3. 100MHz PLL source

- 19 -

1. PCI/PCIe TFP Hardware

Divider Mode

The divider can be used to generate low or fractional frequencies. The divide range is 1E0 through

1E7 in decades. The divider will also allow for fractional frequency outputs where the divider's input

source is decimal shifted by up to seven places.

The divider has another selectablemode, PeriodMode. This modemay be desirable when the DDS

cannot be set exactly to the desired frequency but using a period value would be exact. When oper-

ating in this mode, the output is also a square wave with the period resolution equal to 2 times the

period of the input (Divider Source). If the Divider Source of 100MHz is selected, the period res-

olution is 20nS. When using 100MHz as the Divider Source, a period register of 0 corresponds to a

40 nS period (25MHz) which is PeriodMode's upper limit. Use the following formula to set the Period

Value Register.

Period Register = (Desired Period / (Divider Source period * 2)) - 2

Example of periodmode calculation using 100MHz Divider Source:

Desired period 59.3ms= (59.3E-3 / 20E-9) - 2

Result= 2964998

Multiplier Mode

The DDS circuit also includes a frequency multiplier that may be used. Themultiplier's input is the

DDS and the output is DDS times themultiplication factor. This circuit canmultiply the DDS

frequency by 1, 2, 3, 4, 6, 8, 10 or 16. Note that the DDS frequency must be high or low enough for

use (depends onmultiplication factor - see following ranges).

Input (MHz)

x1 22 - 150

x2 11 - 75
x3 8 - 56

x4 6 - 38

x6 5 - 23

x8 5 - 19

x10 5 - 15

x16 5 - 10

When using theMultiplier Mode, the resolution of the DDS is 1/32 Hz * themultiplier value. The out-

put of this circuitry is capable of creating interrupts. This circuit can generate rates that far exceed a

computer's ability to service the DDS interrupts. Note that the DDS signal is multiplexed with the

PPO signal, where one or the other signals is selected for output on the 15-pin I/O connector pin 15.

The TFP card will load previously set DDS configuration registers at power-on.

- 20 -

1.3. Functional Description

1.3.4. Time Coincidence Strobe Output

The TFP provides one TimeCoincidence StrobeOutput signal. The Strobe output is like an alarm that

is activated at some preprogrammed time. The Strobe time can be set from days throughmicro-

seconds. The duration of the Strobe pulse is onemicrosecond. Twomodes of operation are sup-

ported. In onemode (STRMODE=0), both themajor andminor times are used to generate the Strobe.

In the other mode (STRMODE=1), only theminor time is used to generate the Strobe output, pro-

ducing an output pulse once each second. The Strobe is programmed using the CONTROLRegister

as described in "CONTROLRegister (0x10)" on page 28.

1.3.5. PCI(e) Interrupts

The TFP supports the seven interrupt sources listed in Table 1. Each interrupt source can be individ-

ually masked off. Use theMASK register to mask on or off each interrupt source. Each interrupt

source sets a corresponding bit in the INTSTAT register when the interrupt occurs. When servicing a

TFP interrupt, the Interrupt Service Routine (ISR) in the driver reads the INTSTAT register in order to

determine the interrupt source(s) requesting service.

Table 1: TFP Interrupt Sources

Int Interrupt Source
0 Signal transition on Event Input has occurred (edge selected by EVSENSE)

1 PPO edge has occurred (edge selected by EVSENSE)

2 TimeCoincident Strobe output rising edge has occurred

3 One second epoch (1 PPS output) rising edge has occurred

4 GPS data packet is available (bc637pci-V2 only)

5 Signal transition on Event2 Input has occurred

6 Signal transition on Event3 Input has occurred

1.3.6. Additional Timing Output Signals

The 1 PPS output is a 60 μsec wide pulse with the rising edge occurring at each 1 second epoch.

A TimeCode output signal is available in both AM andDCLS forms simultaneously.

An output frequency of 1MHz, 5MHz, or 10MHz (HCMOS) is selectable.

1.3.7. AM Time Code Calibration

The following AM TimeCode calibration procedure is used to adjust the phase of the Time and

Frequency Processor when operating in TimeCodeMode and using an AM (amplitudemodulated)

- 21 -

1. PCI/PCIe TFP Hardware

input reference. Modulation ratio, carrier frequency, impedance loading, and other effects may

degrade time code performance accuracy. Some applications require very high synchronization accu-

racy while using AM time codes as a reference. The following calibration procedure helps assure the

best time code synchronization accuracy. Because of the inherent differences in the time codes, a dif-

ferent calibration factor exists for each time code type. The user should determine which time code to

use in their system, and then perform the calibration for that code. The user can consult Sym-

metricom if unsure of which code type is best for their application.

1.3.8. Calibration Procedure

The following procedure uses theWindows based bc635PCIcfg.exe program to perform the adjust-

ments. This procedure will synchronize the on-timemark of an incoming time code reference with the

rising edge of an incoming 1 PPS signal. (The accuracy of this calibration is limited by the syn-

chronization of the incoming 1 PPS and the on-timemark of the incoming time code).

1. Connect the AM Time code reference to the Time code Input on J1 pin 7 of the TFP card.

2. Select the Format andModulation type for the reference Time code (using the bc635PCIcfg.exe

pull downmenu “Time code > Decode”).

3. Connect the 1 PPS reference to the External Event Input on J1 pin 6 of the TFP card.

4. Enable the External Event Input on the Rising Edge (using the bc635PCIcfg.exe pull downmenu

“Signals > Events”, and select External Input and Rising Edge).

5. Read theminor event time (using the bc635PCIcfg.exe pull downmenu “Time > Get Event

Time”).

6. Repeat the previous step to obtain an average value. Youmay have to average two neighboring

values (e.g., the average of x.000012 and x.000013 is x.0000125).

7. Convert theminor event time to a calibration factor. If theminor event time is close to rolling over

(i.e., x.999950), subtract 1 from theminor event time to get the calibration factor in microseconds

(e.g., -50 uS or 50E-6 sec); otherwise theminor event time is the calibration factor (e.g., X.000012

= 12 uS or 12E-6 sec).

8. Convert the units of the calibration factor measured in the previous step frommicroseconds to

hundreds of nanoseconds by multiplying it by 10 (12 uS = 120 hundreds of ns). x hundreds of nano-

seconds is equivalent to xE-7sec.

9. Set the Propagation delay on the card to the calibration factor in units of hundreds of nanoseconds

as calculated in the previous step (using the bc635PCIcfg.exe pull downmenu “Time > Set Prop

Delay”).

10. Read theminor event time (using the bc635PCIcfg.exe pull downmenu “Time > Get Event

Time”), and verify that theminor time reading is .000000.

If theminor event time is greater than ±1 uS, adjust the calibration factor as necessary.

Note: Keep this calibration factor and the associated time code type (i.e., IRIG B AMCAL = +120E-7)

in a safe place. If another time code type is to be used as a reference, a new calibration factor should

be determined for that code.

- 22 -

1.3. Functional Description

1.3.9. Field Upgrade of Embedded Program

New versions of the bc63xPCI-V2 (identifiable by the status LED on the front panel) and the

bc63xPCIe cards are upgraded over the host PC’s PCI or PCIe bus. Included on the product CD is

the update program named bcUpgFmware.exe. This Windows based program is used to update the

firmware in the TFP’s flashmemory.

Older versions of the bc63xPCI-V2 cards (identifiable by the circular DIN connector on the front

panel) use a serial port interface for firmware updates. TFP cards use flashmemory, which is

upgraded using an embedded boot loader program. The user transfers the program file that is in S

Record format to the card via a serial port running a terminal program that supports a “text” file transfer

format (e.g. TeraTerm or Hyperterminal). Insertion of themating DIN connector is automatically

detected which places the card in its boot loadmode. The following procedure uses TeraTerm, an

open source terminal emulator.

TeraTerm is configured as follows:

Setup/Serial port...

ll Port:COMx
l Baud rate:19200

- 23 -

1. PCI/PCIe TFP Hardware

l Data:8 bit
l Parity:none
l Stop:1 bit
l Flow control:none
l Transmit delay:

Setup/Terminal...

l New-line
l Receive:CR
l Transmit:CR
l Local echo: not selected

After plugging in the DIN serial port adapter that is connected to a serial port running TeraTerm as con-

figured above, the following string should be output to the terminal screen:

<E>rase , <P>rogram or <R>un Application:

- 24 -

1.3. Functional Description

1. Select <E> to erase the Flash, then select again after themessage <Erased> has been

returned.
2. Select <P>. Use File/Send file... (in Tera Term pulldown), a dialog box appears to select the

file that is to be sent (e.g. bc635-v2.sx). The file should begin transferring with a string of aster-

isks being sent back to the terminal screen until the file transfer is complete (approximately

408KB). It takes approximately 5minutes to download the new file.
3. Select <R> to run the application.

Note: The application is set up to run automatically. However, if the serial cable is connected to the

card, but not to the host computer, the application will hang, awaiting response from the host. If the

application does not run automatically, disconnect the serial cable from the card.

- 25 -

1. PCI/PCIe TFP Hardware

1.4. Device Registers

1.4.1. General

The Time & Frequency Processor (TFP) is controlled by a combination of hardware device registers

and a dual-port RAM interface. This chapter describes the TFP device registers. "1.5. Dual-Port RAM

Interface" on page 35 describes the dual-port RAM interface.

1.4.2. PCI Memory Map

The TFP is divided into two 2K memory spaces, Dual-Port RAM andRegister. The following table

lists the card's physical memory map.

TFP Physical Memory Map

Start Type Size Register Field
PCI Auto R/W 0x800 Dual Port RAM

PCI Auto R/W 0x50 (0x800 reserved) Device Registers

1.4.3. Device Register Description

The TFP device registers are 32-bits wide (PCI word size). For many of the registers, only a few of

the bits have any significance while the rest of the bits are ignored during writes and aremeaningless

during reads. Registers may be:

l Read only (R)
l Write only (W)
l Read/write (R/W)
l Access (A)

Access type registers perform a function simply by being read or written without regard to the data

contents. It is best to use a write operation with the access type registers becausemost optimizing

compilers will remove statements that read a register but do nothing with the data returned. In some

cases, a read/write register is structured to support dissimilar data in the read and write directions.

The following table summarizes the type of register located at each offset and provides a brief descrip-

tion of the register function.

- 26 -

1.4. Device Registers

TFP Device Register Summary

Offset Type Reset Label Description
0x00 A SeeNote TIMEREQ TimeRequest (TIME0-1)

0x04 A SeeNote EVENTREQ Event Request (EVENT0-1)

0x08 A SeeNote UNLOCK1 Release Lockout Event1

0x0C A SeeNote UNLOCK2 Release Lockout Event2

0x10 R/W 0 CONTROL Control Register

0x14 R/W SeeNote ACK Acknowledge Register

0x18 R/W 0 MASK Interrupt Mask

0x1C R/W 0 INTSTAT Interrupt Status

0x20 R/W SeeNote MINSTRB Minor Strobe Time

0x24 R/W SeeNote MAJSTRB Major Strobe Time

0x28 R SeeNote EVENT2_0 Minor Event2 Register

0x2C R SeeNote EVENT2_1 Major Event2 Register

0x30 R SeeNote TIME0 Minor TimeHolding Register

0x34 R SeeNote TIME1 Major TimeHolding Register

0x38 R SeeNote EVENT0 Minor Event1 Register

0x3C R SeeNote EVENT1 Major Event1 Register

0x40 Reserved

0x44 A SeeNote UNLOCK3 Release Lockout Event3

0x48 R SeeNote EVENT3_0 Minor Event3 Register

0x4C R SeeNote EVENT3_1 Major Event3 Register

Note:Register contents are undefined at reset.

TIMEREQ Register (0x00)

Accessing this register (with a read or write operation) latches the current time and timing status in

the TIME0 - TIME1 registers. The data value transferred is meaningless.

EVENTREQ Register (0x04)

Accessing this register (with a read or write operation) latches the current time and timing status in

the EVENT0 - EVENT1 registers. The data value transferred is meaningless. Accessing the

- 27 -

1. PCI/PCIe TFP Hardware

EVENTREQ register does not generate an Event Input interrupt.

UNLOCK1 Register (0x08)

Accessing this register (with a read or write operation) releases the EVENT1 time capture lockout

function if it has been enabled, allowing the Event Input or Periodic/DDS Output to capture a new

time. The Event TimeCapture Lockout is enabled using bit 0 in the CONTROLRegister (LOCKEN1).

UNLOCK2 Register (0x0C)

Accessing this register (with a read or write operation) releases the EVENT2 time capture lockout

function if it has been enabled, allowing a new event to be captured. The Event2 TimeCapture Lock-

out is enabled using bit 8 in the CONTROLRegister (LOCKEN2).

CONTROL Register (0x10)

This register controls a variety of TFP hardware functions. The following table lists the function of

each bit in this register.

- 28 -

1.4. Device Registers

CONTROL Register

Bit Name Function

0 LOCKEN 1

EVENT1Capture Lockout Enable

0 = Disable Lockout

1 = Enable Lockout

1 EVSOURCE

EVENT1 TimeCapture Register Source Select

0 = Event Input

1 = Periodic/DDS

(Select Active EdgeWith EVSENSE)

2 EVSENSE1

Event1 Edge Select

0 = Rising

1 = Falling

3 EVENTEN1

Event1 Capture Register Enable

0 = Disable

1 = Enable

(Use EVSOURCE to Select Event Source)

4 STREN

TimeCoincidence StrobeOutput Enable

0 = Disable (StrobeOutput is Held Low)

1 = Enable

5 STRMODE

TimeCoincidence StrobeMode

0 = UseMajor andMinor Time for Strobe Function

1 = UseMinor TimeOnly for Strobe Function

If STRMODE = 1, anOutput Strobe is Produced Each Second

6 FREQSEL0

Output Frequency Select

00 = 10MHz

01 = 5MHz

1X = 1MHz

7 FREQSEL1

Output Frequency Select

00 = 10MHz

01 = 5MHz

1X = 1MHz

8 LOCKEN2

EVENT2Capture Lockout Enable

0 = Disable Lockout

- 29 -

1. PCI/PCIe TFP Hardware

Bit Name Function
1 = Enable Lockout

9 EVSENSE2

Event2 Edge Select

0 = Rising

1 = Falling

10 EVENTEN2

Event2 Capture Enable

0 = Disable

1 = Enable

11 Reserved

12 LOCKEN3

EVENT3Capture Lockout Enable

0 = Disable Lockout

1 = Enable Lockout

13 EVSENSE3

Event3 Edge Select

0 = Rising

1 = Falling

14 EVENTEN3

Event3 Capture Enable

0 = Disable

1 = Enable

15 - 31 Reserved

Note: Register contents are undefined at reset.

Examples: 0x08 enables event1, 0x400 enables event2, 0x4000 enables event3.

The EVSOURCE bit selects one of two signal sources for capturing time in the EVENT1 registers;

either the Event Input signal from the Signal I/O connector or the PPO/DDS Output. When PPO/DDS

is selected as the Event Source, the PPO/DDS and Event Input are internally connected, eliminating

the need for an external physical connection.

The EVENTENx bit is used to enable capture of time into the respective EVENTx registers.

The EVSENSEx bit controls the active edge that is used to capture time into the respective EVENTx

registers.

Enabling the Lockout function via the LOCKENx bit allows only the first instance of the selected sig-

nal source to latch time in the respective EVENTx registers, locking out any subsequent events. Use

the UNLOCKx register (0x08, 0x0C, 0x44) to re-arm the respective circuits.

ACK Register (0x14)

The ACK register is used to prevent dual-port RAM data contention when the same address on both

sides of a dual-port RAM is accessed simultaneously. See "Command 0x14: Set Periodic Output" on

- 30 -

1.4. Device Registers

page 43 for more information on the format and use of this register.

MASK Register (0x18)

The TFM supports the seven interrupt sources listed in the following table. Each interrupt source can

be individually masked on or off using theMASK register (0x18). Each interrupt source sets a cor-

responding bit in the INTSTAT register (0x1C) when the interrupt occurs.

Bits 0-6 in theMASK register correspond to interrupt sources zero through six listed in the following

table. An interrupt source is enabled (to generate a PCI interrupt) by writing a value of one to the cor-

respondingMASK bit. Writing a zero to the interrupt MASK bit disables that interrupt source.

INTSTAT Register (0x1C)

The INTSTAT register has the same structure as theMASK register listed in the following table. Each

interrupt source sets its corresponding bit in this register when it occurs. The INTSTAT register bits

get set regardless of the state of theMASK bits. INTSTAT bits are cleared by writing to the INTSTAT

register with the corresponding bit(s) set. For example, to clear INTSTAT bit zero, write 0x01 to the

INTSTAT register. To clear all INTSTAT bits simultaneously, write 0x7F to the INTSTAT register.

The corresponding INSTAT bit MUST be cleared in order to enable the next interrupt occurrence.

A PCI interrupt is generated anytime one or more INTSTAT bits [0 through 6] are set and the cor-

responding bit(s) are set in theMASK register and interrupts have been enabled (started).

INTSTAT Register

Bit Function
0 Event Input has occurred

1 Periodic/DDS Output has occurred

2 Strobe (time coincidence) has occurred

3 1 PPS output has occurred

4 GPS Data Packet is available (bc637models only)

5 Signal transition on Event2 Input has occurred

6 Signal transition on Event3 Input has occurred

7-31 Reserved

Note: Register contents are undefined at reset.

MINSTRB (0x20) – MAJSTRB (0x24) Registers

These registers hold the programmed TimeCoincidence Strobe time. The contents of these registers

depend on the time format selected. The Strobe time is programmable from hours throughmicro-

seconds in the decimal time format. When the time format is set to binary, only the 22 least sig-

- 31 -

1. PCI/PCIe TFP Hardware

nificant bits of themajor time are used (in addition tomicroseconds), this allows the user to program

the Strobe to become activated up to 48 days beyond the current time.

Note: Disable the Strobe output (see CONTROL register) while programming the Strobe time to pre-

vent spurious Strobe output pulses.

EVENT2_0 (0x28) – EVENT2_1 (0x2C) Registers

These read only registers hold theminor time (EVENT2_0) andmajor time (EVENT2_1) captured

from an event on the EVENT2 input. The contents of these registers depend on the time format

selected (see Time Format).

TIME0 (0x30) - TIME1 (0x34) Registers

These read only registers hold time captured by an access of the TIMEREQ register (0x00) providing

a software time capture. The contents of these registers depend on the time format selected (see

Time Format).

EVENT0 (0x38) - EVENT1 (0x3C) Registers

These read only registers hold time captured when the EVENTREQ register is accessed (0x04) by an

Event Input (if enabled), or a PPO/DDS signal is generated (if enabled). The contents of these reg-

isters depend on the time format selected (see Time Format).

UNLOCK3 Register (0x44)

Accessing this register (with a read or write operation) releases the EVENT3 time capture lockout

function if it has been enabled, allowing a new event to be captured. The Event3 TimeCapture Lock-

out is enabled using bit 12 in the CONTROLRegister (LOCKEN3).

EVENT3_0 (0x48) – EVENT3_1 (0x4C) Registers

These read only registers hold theminor time (EVENT3_0) andmajor time (EVENT3_1) captured

from an event on the EVENT3 input. The contents of these registers depend on the time format

selected (see Time Format).

1.4.4. TIME FORMAT

The TFP major time registers (TIME1, EVENT1, Event2_1, Event3_1, MAJSTRB) support binary

time (Table 2) and decimal time (Table 3) formats. Sub-second time (minor time) is always rep-

resented in binary format. The 32-bit binary format represents time as the number of seconds since

midnight, January 1, 1970 UTC (Universal TimeCoordinated), which is the standard time format

found onmost UNIX systems. Note that the year field is stored in the dual-port RAM. The decimal

time format is derived from the “struct-tm” format used on UNIX systems. The bottom numbers in

- 32 -

1.4. Device Registers

each cell in Table 2 and Table 3 define the bit positions for each data field. All undefined bit positions

in Table 3 are N/A.

Table 2. TFP Binary Time Format

Register Data Bits

31-28 27-24 23-20 19-16 15-8 7-0

TIME1

EVENT1

EVENT2_1

EVENT3_1

Major TimeUNIX Seconds

31 - 0

TIME0

EVENT0

EVENT2_0

EVENT3_0

N/A

31 - 28

Status

27 - 24

100 ns

23 - 20

Binary microseconds

19 - 0

MAJSTRB N/A

31 - 22

Major TimeUNIX Sec (22 bits LSB)

21 - 0

MINSTRB N/A

31 - 28

Status

27 - 24

N/A

23 20

Binary microseconds

19 - 0

Table 3. TFP Decimal Time Format

- 33 -

1. PCI/PCIe TFP Hardware

Register Data Bits

31 - 28 27-24 23-20 19-16 15-8 7-0
TIME1_

EVENT1

EVENT2_1

EVENT3_1

Days (0-366)

Bits 7 - 0

31 - 24

Hours

(0 - 23)

20 - 16

Min

(0 - 59)

12 - 8

Sec

(0 - 59)

5 - 0

TIME0_

EVENT0

EVENT2_0

EVENT3_0

Days

Bit 8

28

Status

27 - 24

100 nS

23 - 20
Binary microsecond 19 - 0

MAJSTRB
N/A

31 - 24

hours

(0 - 23)

20 - 16

Min

(0 - 59)

12 - 8

Sec

(0 - 59)

5 - 0

MINSTRB
N/A

31 - 28

Status

27 - 24

N/A

23 - 20

Binary microseconds

19 - 0

The format of theminor time registers (TIME0, EVENT0, Event2_0, Event3_0, MINSTRB) is always

binary, 20 bits of binary microseconds (0 - 999,999) in the lower part of the registers with an additional

four bit field of hundreds of nanoseconds (0 - 9) located in bits 20 - 23. Most UNIX time functions use

microseconds, but the TFP maintains time to hundreds of nanoseconds.

STATUS BITS

The TFP Status bits found in theminor time registers are summarized in the following table and are

described below. Bits 24, 25 and 26, in the PCI Windows configuration program, are represented as

LEDs labeled:

l Tracking (T)
l Phase (P)
l Frequency (F)

(0 = Green, 1 = Red).

- 34 -

1.5. Dual-Port RAM Interface

Status Bits Summary

Bit Description

24

Tracking (T)

0: Locked To Selected Reference

1: Flywheeling (Not Locked)

25

Phase (P)

0: < X Microseconds

1: > X Microseconds

X = 5 (Mode 0) X = 2 (All Other Modes)

26

Frequency (F)

0: < 5 x 10-8

1: > 5 x 10-8

27 Reserved

STATUS: Tracking (Bit 24)

This bit indicates that the TFP is not tracking the reference time source, usually because the time

source has been lost or has become unusable. When a timingMode change occurs, this bit is set

until the TFP locks to the new timing source.

STATUS: Phase (Bit 25)

This bit indicates the synchronization accuracy of the TFP relative to the timing source. This bit is

updated approximately once per second. When the TFP's oscillator is synchronized to less than 5

microseconds with AM time codemode as a reference and less than 2microseconds in other modes,

this bit is cleared.

STATUS: Frequency Offset (Bit 26)

This bit is an indication of the TFP on-board oscillator frequency offset relative to the timing source.

This bit reflects the short-term stability of the TFP's oscillator.

1.5. Dual-Port RAM Interface

- 35 -

1. PCI/PCIe TFP Hardware

1.5.1. General

The byte-wide dual-port RAM (DPRAM) interface provides a communications pathway between the

user and the Time & Frequency Processor (TFP)micro-controller (MPU). The RAM size is 2Kx8. The

ACK register is used in conjunction with the DPRAM to avoid data contention when amemory loca-

tion is accessed simultaneously from both sides of the DPRAM. Four areas within the DPRAM are

available to the user:

Input Area

This area is used for sending commands to the TFP to set the timingmode, time code format, etc.

This area is also used to send data packets to the optional GPS receiver.

Output Area

This area holds data that the user requests from the TFP.

GPS Area

This area holds packets of data from the optional GPS receiver such as position, velocity, GPS

status, etc.

Year Area

This area holds the year number derived from the timing source (if available). The year value is

restored after a power cycle.

DPRAM Address and Contents

Data Size Offset
Year Area 2 bytes 0x00

GPS Area 0x80 bytes 0x02

Output Area 0x80 bytes 0x82

Input Area 0x80 bytes 0x102

1.5.2. ACK Register

This register is used to prevent dual-port RAM data contention when the same address on both sides

of a dual-port RAM is accessed simultaneously. Only three bits in this register are used, and each bit

operates independently. The function of each bit in this register is described below.

- 36 -

1.5. Dual-Port RAM Interface

ACK Bit 0

Set by the TFP to acknowledge the receipt of a user command from the DPRAM Input Area. The user

can clear this bit by writing to the ACK register with bit 0 set, but cannot set this bit.

ACK Bit 2

Set by the TFP to indicate that a GPS packet is available in the DPRAMGPS Packet Area. The user

can clear this bit by writing to the ACK register with bit two set, but cannot set this bit. The transition

of this bit from zero to one activates interrupt source four.

ACK Bit 7

The user writes to the ACK register with bit seven set to cause the TFP to read a command from the

DPRAM Input Area. This bit has nomeaning when read.

1.5.3. TFP DPRAM Commands

This section describes the TFP commands available through the DPRAM Interface. Commands con-

sist of a command ID byte followed by zero or more data bytes. The command ID byte is written to

the first location in the DPRAM Input Area, followed by the command data byte(s). The following com-

mand data types are used. Command data is loaded into the DPRAM in the Big-Endian fashion, most

significant byte first. The following table summarizes the DPRAM commands.

DPRAMCommands

UINT8 Unsigned 8 Bit Integer (1 Byte)

INT8 Signed 8 Bit Integer (1 Byte)

UINT16 Unsigned 16-Bit Integer (2 Bytes)

INT16 Signed 16-Bit Integer (2 Bytes)

UINT32 Unsigned 32-Bit Integer (4 Bytes)

INT32 Signed 32-Bit Integer (4 Bytes)

FLOAT ANSI / IEEE Std 754 Standard Floating-Point Format (4 Bytes)

DOUBLE ANSI / IEEE Std 754 Standard Floating-Point Format (8 Bytes)

The following steps should be followed when sending commands to the TFP.

1. Write the command ID and data bytes to the DPRAM starting at the first location in the Input

Area.

2. Clear bit zero of the ACK register by writing 0x01 to the ACK register.

3. Inform the TFP that a command is waiting by writing 0x80 to the ACK register.

- 37 -

1. PCI/PCIe TFP Hardware

4. Wait for the TFP to set bit 0 of the ACK register. Do not begin writing another command to the

Input Area until this bit becomes set.

Windows example (uses bc635PCIcfg.exeGUI):

Set the Periodic rate output to 10KPPS and Synchronous Mode.

Select the AdvancedMenu.

Use the Special Tab and the DP RAM selection from themenu list.

a. Offset 102 (input packet base address)

b. Value 14 (14 is the set periodic output command ID)

c. select theWRITE button

d. Offset 103

e. Value 1 (value of 1 here selects Synchronous Mode)

f. select theWRITE button

g. Offset 104

h. Value 0 (msb of n1 value)

i. select theWRITE button

j. Offset 105

k. Value a (lsb of n1 value set to decimal 10)

l. select theWRITE button

m. Offset 106

n. Value 0 (msb of n2 value)

o. select theWRITE button

p. Offset 107

q. Value a (lsb of n2 value set to decimal 10)

r. select theWRITE button

s. select the ACK button and the Periodic output will be set.

- 38 -

1.5. Dual-Port RAM Interface

- 39 -

1. PCI/PCIe TFP Hardware

DPRAM Command Summary

ID Reset Command
0x10 NV Set TFP TimingMode

0x11 1 Set TimeRegister Format (1 = binary, 0 = bcd)

0x12 RTC Set Major Time

0x13 RTC Set Year

0x14 NV Set Periodic Output

0x15 NV Set Input TimeCode Format

0x16 NV Set Input TimeCodeModulation

0x17 NV Set Propagation Delay Compensation

0x18 NV Request UTC TimeData (bc637 only)

0x19 N/A Request TFP Data

0x1A N/A Software Reset

0x1B NV Set TimeCodeOutput Format

0x1C NV Set Generator TimeOffset

0x1D NV Set Local TimeOffset

0x1E 0 Set Leap Second Event

0x1F N/A Request Firmware information

0x20 NV Set Clock Source (0 = Internal, 1=External)

0x21 1 Control Jamsync

0x22 N/A Force Jamsync

0x24 NV Load DAC

0x25 N/A Set Disciplining Gain

0x26 N/A Battery Connection Status

0x27 N/A Synchronize RTC to TFP Time

0x28 N/A Battery Connection Control

0x30 N/A Send Packet to GPS Receiver (bc637 only)

0x31 N/A Request Packet from GPS Receiver (bc637 only)

0x32 N/A Manual Request GPS Packet (bc637 only)

0x33 0 Select GPS Time Format (bc637 only)

0x40 NV Observe Local Time Flag

0x41 NV IEEE 1344 Daylight Saving and Local Time Flags

0x43 NV Periodic/DDS Select (0=Periodic, 1=DDS)

0x44 NV Periodic/DDS Enable (0 = OFF, 1=ON)

0x45 NV DDS Divide Select

0x46 NV DDS Divide Source

0x47 NV DDS Sync Mode

0x48 NV DDS Multiplier

0x49 NV DDS Period Value

0x4A NV DDS TuningWord

0x4F N/A Request PCI Firmware Part Number

0xF6 N/A Request TFP Model Identification

0xFE N/A Request TFP Serial Number (Request only)

- 40 -

1.5. Dual-Port RAM Interface

n RTC: Real TimeClock (Restored at Power-on)

n NV: Non Volatile (Restored at Power-on)

Command 0x10: Set TFP Timing Mode

This command selects the timingmode of the TFP.

Byte Type Item Value or Range
0 UINT8 ID 0x10

1 UINT8 TimingMode See Below

TFP TimingMode:

n 0x00 TimeCode (Selected TimeCode AM or DCLS)

n 0x01 Free Running (Internal or External 10MHz Reference Selected)

n 0x02 1 PPS (External One Pulse Per Second)

n 0x03 Real TimeClock (Battery backed RTC)

n 0x06GPS (bc637 only)

Command 0x11: Set Time Register Format

This command allows the user to select themajor time format. Available time formats are Binary

Coded Decimal (BCD) and UNIX (Binary). The time format affects the TIMEx, and EVENTx registers

and Command 0x12. See Table 1 and Table 2 for the UNIX and BCD time register definitions, respec-

tively.

Byte Type Item Value or Range
0 UINT8 ID 0x11

1 UINT8 Data Format See Below

TimeData Format:

n 0x00 BCD TIME FORMAT

n 0x01 UNIX TIME FORMAT (default)

- 41 -

1. PCI/PCIe TFP Hardware

Command 0x12: Set Major Time

This command allows the user to load themajor time to the TFP Major TimeRegisters in binary

(UNIX) or BCD format. The format is determined by Command 0x11 as referenced above. The

default major time format is UNIX binary time. This command normally applies to the TFP while in

timemodes 1, 2 or 3. The TFP derives its major time from the selected external timing reference sig-

nal in timemodes 0 and 6, and from the RTC inmode 3. If timemode 0 or 6 is used, any major time

written by this commandwill be overwritten when the selected source is providing a valid time to the

TFP.

Byte Type Item Value or Range
0 UINT8 ID 0x12

Case 1: UNIX TimeData Format = 0x01 (Command 0x11, format 0x01) default

Byte Type Item Value or Range
1-4 UINT32 UNIX Time 0 to 0xffffffff

Case 2: BCD TimeData Format = 0x00 (Command 0x11, format 0x00)

Byte Type Item Value or Range
0 UINT8 ID 0x12

1-2 UINT16 Year 1970 - 2036

3-4 UINT16 Days 0 to 0x16e (0 to 366)

5 UINT8 Hours 0 to 0x17 (0 to 23)

6 UINT8 Minutes 0 to 0x3b (0 to 59)

7 UINT8 Seconds 0 to 0x3b (0 to 59)

The time loaded by this commandwill not be readable until the one-second epoch following the load.

There is a possibility the TFP will have incremented the time during the load. To prevent ambiguities

in the time, the user must issue this command in advance of the 800-millisecond point within the one-

second epoch, referencing the current epoch.

This command normally applies to the TFP modes 1 and 2. The TFP derives its major time from the

timing reference signal in other modes. The format data of this command depends on the Command

0x11 time format selection.

Command 0x13: Set Year

This command allows the user to set the year.

Byte Type Item Value or Range
0 UINT8 ID 0x13

1 UINT16 Year 1970 - 2036

- 42 -

1.5. Dual-Port RAM Interface

Command 0x14: Set Periodic Output

This command establishes the frequency of the TFP Programmable Periodic Output. "1.3.2. Heart-

beat Output" on page 18 describes the relationship between the dividers n1, n2 and the Periodic Out-

put frequency.

Byte Type Item Value or Range
0 UINT8 ID 0x14

1 UINT8 Sync Flag
0 = Don't Sync To 1PPS

1 = Sync To 1 PPS

2-3 UINT16 Divider n1 2 - 65535

4-5 UINT16 Divider n2 2 - 65535

Command 0x15: Set Input Time Code Format

This command selects the time code format for TFP TimingMode “0” time code input. (See Com-

mand 0x10.) Use Command 0x16 to set themodulation type. Note that this selection is restored at

power-up from NV memory.

Byte Type Item Value or Range
0 UINT8 ID 0x15

1 UINT8 Format1 See below

2 UINT8 Format2 See below

Format Choices:

Format1 Format2 ASCII AM Time Code DCLS
0x41 0x0 'A' A130,1,2,3 IRIG A no year A000,1,2,3

0x41 0x59 'AY' A134,5,6,7 IRIG A w/year A004,5,6,7

0x42 0x0 'B' B120,1,2,3 IRIG B no year B000,1,2,3

0x42 0x59 'BY' B124,5,6,7 IRIG B w/year B004,5,6,7

0x45 0x0 'E' E121,2 IRIG E 1K no year E001,2

0x45 0x59 'EY' E125,6 IRIG E 1K w/year E005,6

0x65 0x0 'e' E111,2 IRIG E 100 no year E001,2

0x65 0x59 'eY' E115,6 IRIG E 1K w/year E005,6

0x47 0x0 'G' E141,2 IRIGG no year G001,2

0x47 0x59 'GY' E145,6 IRIGGw/year G005,6

0x42 0x54 'BT' AM IRIG B TrueTime DCLS

0x49 0x0 'I' AM IRIG B IEEE 1344 DCLS

0x4e 0x0 'N' AM NASA 36 DCLS

0x58 0x0 'X' AM XR3 (250 Hz) DCLS

0x32 0x0 '2' AM 2137 (1 kHz) DCLS

- 43 -

1. PCI/PCIe TFP Hardware

Note that AM time codes with carrier frequencies less than 1 KHz (IRIG E111, 2, 5, 6@ 100Hz and

XR3@ 250Hz) will decode properly but will not necessarily maintain short term phase and frequency

lock. Long term, the low frequency carrier time codes maintain phase and frequency with reduced

accuracy. Phase and frequency accuracy is better when using DCLS time codes.

Note: that when Legacy TrueTime IRIG B is used, the TFP will decode the “Lock” bit that is encoded

in the Control Function area and will not lock to the incoming code if the bit = 1 (an indication of unlock

from the input reference).

Command 0x16: Set Input Time Code Modulation Type

This command selects the time codemodulation type format for TFP TimingMode “0” time code input

(See Command 0x10). Use Command 0x15 to select the time code format.

Byte Type Item Value or Range
0 UINT8 ID 0x16

1 UINT8 modulation See below

Modulation Choices:

n 0x4D ('M') amplitudemodulated sine wave (AM)

n 0x44 ('D') DC level shift (DCLS)

Command 0x17: Set Propagation Delay Compensation

It is sometimes desired to program an offset into the basic TFP time keeping functions relative to the

reference input. For example, if the reference input is an IRIG B time code, theremay be significant

cable delay between the IRIG B generator and the TFP location. This command allows this time dif-

ference to be removed by inserting the known amount of offset between the IRIG B reference and

TFP location. The offset is programmable in units of 100 nanoseconds, andmay be positive or neg-

ative.

Byte Type Item Value or Range
0 UINT8 ID 0x17

1-4 UINT32 offset -4,000,000 to +4,000,000

- 44 -

1.5. Dual-Port RAM Interface

Command 0x18: Request UTC Time Data (bc637 only)

This command queries current GPS and UTC time information derived from theGPS receiver. This

commandmust be used in conjunction with Command 0x19.

Byte Type Item Value or Range
0 UINT8 ID 0x18

1 UINT8 GPS Time Format See below

2 UINT8 Leap Second 0 to 0xff

3 INT8 Leap Second Flag See below

4-7 UINT32 Leap Event UNIX Time 0 to 0xffffffff

GPS Time Format:

n 0x00 UTC Time (GPS time plus leap seconds)

n 0x01GPS Time

Leap Second Flag:

n 0xff Deletion Event

n 0x00 No Event

n 0x01 Addition Event

Command 0x19: Request TFP Data

This command requests data from the TFP that is not available via the device registers. The TFP

transfers the requested data to the DPRAMOutput Area. The data is available to the user as soon as

the TFP sets ACK bit 0.

Byte Type Item Value or Range
0 UINT8 ID 0x19

1 UINT8 Req. data type (See Below)

Requested Data Type Choices

0x10 TimingMode

0x11 Timing Format

0x13 Current Year

0x14 Periodic Output (Sync Flag only)

0x15 TimeCode Format

0x16 TimeCodeModulation

0x17 Propagation Delay

0x18 UTC TimeData (bc637)

0x1B TimeCodeOutput Format

- 45 -

1. PCI/PCIe TFP Hardware

0x1C Generator TimeOffset

0x1D Local TimeOffset

0x1E Leap Second Setting

0x1F TFP Firmware Information

0x20 Clock Source (on-board/external)

0x21 Jamsync Control

0x24 DAC Value

0x26 Battery Connection Status

0x4F FW Revision

0xF4 Assembly Number

0xF5 Hardware Revision

0xF6 TFP Model

0xFE Serial Number

Command 0x1A: Software Reset

This command vectors the TFP MPU to its power-on reset point and contains no data.

Command 0x1B: Set Time Code Output Format

This command allows the user to select the time code format that is generated by the TFP on J1.

Note that this selection is restored at power-up from NV memory.

Byte Type Item Value or Range
0 UINT8 ID 0x1B

1 UINT8 Format1 See below

2 UINT8 Format2 See below

TimeCodeOutput Formats:

Format1 Format2 ASCII AM Time Code DCLS
0x41 0x30 'A0' A130 BCD, CF, SBS A000

0x41 0x31 'A1' A131 BCD, CF A001

0x41 0x32 'A2' A132 BCD A002

0x41 0x33 'A3' A133 BCD, SBS A003

0x41 0x34 'A4' A134 BCD, YR, CF, SBS A004

0x41 0x35 'A5' A135 BCD, YR, CF A005

0x41 0x36 'A6' A136 BCD, YR A006

0x41 0x37 'A7' A137 BCD, YR, SBS A007

0x42 0x30 'B0' B120 BCD, CF, SBS B000

0x42 0x31 'B1' B121 BCD, CF B001

0x42 0x32 'B2' B122 BCD B002

0x42 0x33 'B3' B123 BCD, SBS B003

- 46 -

1.5. Dual-Port RAM Interface

Format1 Format2 ASCII AM Time Code DCLS
0x42 0x34 'B4' B124 BCD, YR, CF, SBS B004

0x42 0x35 'B5' B125 BCD, YR, CF B005

0x42 0x36 'B6' B126 BCD, YR B006

0x42 0x37 'B7' B127 BCD, YR, SBS B007

0x42 0x0 'B' B122 BCD B002

0x42 0x54 'BT' AM Legacy TrueTime DCLS

0x49 0x0 'I' AM IEEE 1344 DCLS

0x45 0x31 'E1' E121 BCD, CF E001

0x45 0x32 'E2' E122 BCD E002

0x45 0x35 'E5' E125 BCD, YR, CF E005

0x45 0x36 'E6' E126 BCD, YR E006

0x65 0x31 'e1' E111 BCD, CF E001

0x65 0x32 'e2' E112 BCD E002

0x65 0x35 'e5' E115 BCD, YR, CF E005

0x65 0x36 'e6' E116 BCD, YR E006

0x47 0x35 'G5' G145 BCD, YR, CF G005

0x4E 0x0 'N' AM Nasa 36 DCLS

0x58 0x0 'X' AM XR3 DCLS

0x32 0x0 '2' AM 2137 DCLS

IRIGControl Function (CF) Bits In the following tables, tq1 through tq4 are time quality bits. For time

quality and unlock bits, "1" means active.

For IRIG output codes A, B, E or Gwith CF bits, the following CF bits are encoded:

Index Bit

count name

----- -----

70 (0)

71 (0)

72 (0)

73 unlock (1 = unit not locked to reference)

74 (0)

75 tq1 (1 = timing error estimate > 1us)

76 tq2 (1 = timing error estimate > 10us)

77 tq3 (1 = timing error estimate > 100us)

78 tq4 (1 = timing error estimate > 1ms)

- 47 -

1. PCI/PCIe TFP Hardware

For Legacy TrueTime IRIG B, the following CF bits are encoded:

Index Bit

count name

----- -----

50 (0)

51 (0)

52 (0)

53 unlock (1 = unit not locked to reference)

54 (0)

55 tq1 (1 = timing error estimate > 1us)

56 tq2 (1 = timing error estimate > 10us)

57 tq3 (1 = timing error estimate > 100us)

58 tq4 (1 = timing error estimate > 1ms)

Note that when Legacy TrueTime IRIG B is selected, CF bits are encoded. The unlock bit may be

used to inform time code readers of the generators lock status.

Command 0x1C: Set Generator Time Offset

This command is used to add/subtract an offset to the time code generator output. This command

affects the generator output only.

Byte Type Item Value or Range
0 UINT8 ID 0x1C

1-2 UINT16 Local Offset 0xfff0 to 0x0010 (-16 to +16)

3 UINT8 Half Hour 0 or 1

HALF HOUR:

n 0 = half hour not present (30min)

n 1 = half hour present (30min)

- 48 -

1.5. Dual-Port RAM Interface

Command 0x1D: Set Local Time Offset

This command adds/subtracts local time offset to the TFP time. This command affects the TFP time

only; the generator time is not affected. (See Command 0x1C.)

Byte Type Item Value or Range

0 UINT8 ID 0x1D

1-2 UINT16 Local Offset 0xfff0 to 0x0010 (-16 to +16)

3 UINT8 Half Hour 0 or 1

Half Hour:

n 0 = half hour not present (30min)

n 1 = half hour present (30min)

Command 0x1E: Program Leap Second Event

Byte Type Item Value or Range
0 UINT8 ID 0x1E

1 INT8 LS_Flag -1 to +1

Leap Second Flag:

l 1 = Insertion
l -1= Deletion (0xff)
l 0 = Disable

Command 0x1F: Request Firmware Information

Byte Type Item Value or Range
0 UINT8 ID 0x1F

1 INT8 Major SW version 0x1 to 0x63 (1- 99)

2 INT8 Minor identifier (Model dependant) *

3 INT8 SW releaseMonth 0x1 to 0xC (1-12)

4 INT8 SW release Date 0x1 to 0x1F (1-31)

5 INT8 SW release YR (MS) Year

6 INT8 SW release YR (LS) Year

* Model dependant (x=Major version)

x.20 = bc635

- 49 -

1. PCI/PCIe TFP Hardware

x .21= bc637

x.22 = bc635 + OCXO

x.23 = bc637 + OCXO

Year Example:

Byte5 = 0x07, Byte6 = 0xd9 => 0x7d9 = 2009

Command 0x20: Select Clock Source

This command selects the clock source for the TFP. The TFP uses a time base frequency of 10

MHz. The 10MHz may be derived from the on-board oscillator or it may be supplied from an external

oscillator via the J1 connector.

Byte Type Item Value or Range
0 UINT8 ID 0x20

1 UINT8 clock source see below

Clock Source Choices:

n 0x49 ('I') Internal 10MHz Oscillator

n 0x45 ('E') External 10MHz Oscillator

Command 0x21: Control Jamsync

This command can be used to disable TFP jam-syncs that normally occur automatically. The default

is jamsync enabled.

Byte Type Item Value or Range
0 UINT8 ID 0x21

1 UINT8 jamsync ctrl
0 = jamsync disabled

1 = jamsync enabled

Command 0x22: Force Jamsync

This command forces the TFP to perform a single jamsync operation and contains no data. (See

Command 0x21).

- 50 -

1.5. Dual-Port RAM Interface

Command 0x24: Load DAC

The TFP’s 10MHz oscillator frequency is voltage controlled using the output from a 16-bit DAC. This

command allows the user to directly load a 16-bit value to the DAC. This feature allows the user to

fine tune the TFP time base when operating in the Free RunningMode. This voltage is also routed out

of the TFP via the J1 connector (pin 9) allowing external oscillators to be disciplined. The DAC output

voltage ranges nominally from 0 V (value = 0x0000) to 5 V (value = 0xFFFF).

JP3 is used to select the DAC voltage range. When the 2mm jumper is OFF, the DAC voltage is 0-5

VDC; whenON the voltage is 0-10 VDC. Both on-board oscillators that are offered for this card use

the 0-5 VDC control voltage range. If an external oscillator requires a 0-10 VDC control voltage range,

a 2mm jumpermust be placed on JP3.

Byte Type Item Value or Range
0 UINT8 ID 0x24

1-2 UINT16 DAC value 0x0000 - 0xFFFF

Command 0x25: Set Disciplining Gain

This command allows the gain and sense of the disciplining process to be set by the user. A positive

gain indicates that the voltage-controlled oscillator source frequency increases with increasing con-

trol voltage. This feature is valuable to anyone using the TFP to discipline an external oscillator.

Byte Type Item Value or Range
0 UINT8 ID 0x25

1-2 INT16 gain -100 to +100

Note: Use this commandwith caution, as it will affect the TFP disciplining routine.

Gain Default:

n 0x02 = TCXO

n 0x20 = OCXO

Command 0x26: Request Battery Connection Status

This request (used with command 0x19) reads the current RTC battery connection status which is

either connected (0x1) or disconnected (0x0).

Byte Type Item Value or Range
0 UINT8 ID 0x26

1-2 INT16 battstat 0x0, 0x1

- 51 -

1. PCI/PCIe TFP Hardware

Command 0x27: Synchronize RTC to External Time Data

This command forces the TFP to synchronize the RTC time to the current time. Note that when the

TFP is locked to a timing reference, the RTC is adjusted automatically.

Command 0x28: RTC Battery Connection Control

This command controls the connection/disconnection of the RTC battery. The disconnect control

may be used to keep the battery from being discharged while in storage. The next time the board is

powered up, the battery is automatically reconnected to resumeRTC battery backup power when the

board power is removed. Connect=0x1, Disconnect=0x0.

Byte Type Item Value or Range
0 UINT8 ID 0x26

1-2 INT16 battcon 0x0, 0x1

Command 0x30: Send Packet to GPS Receiver (bc637 only)

This command allows the user to send aGPS packet to the GPS receiver. The format and use of this

command is described in GPS Receiver Interface.

Command 0x31: Request Packet from GPS Receiver (bc637 only)

This command allows the user to request a GPS packet (i.e., position, velocity, status, etc.) from the

GPS receiver. The format and use of this command is described in GPS Receiver Interface.

Command 0x32: Manually Request Packet from GPS Receiver (bc637 only)

This command is similar in function to Command 0x31. Refer to GPS Receiver Interface.

Command 0x33: Set GPS Time Format (bc637 only)

This command allows the user to select betweenGPS time and UTC when using TimingMode 6

(GPS). The relationship between UTC andGPS time is shown below. The default setting is UTC

(UTC = GPS Time + Leap Seconds).

Byte Type Item Value or Range
1 UINT8 ID 0x33

2-5 UINT8 GPS time format flag

- 52 -

1.5. Dual-Port RAM Interface

GPS time format flag:

n 0 = UTC (default)

n 1 = GPS Time

Command 0x40: Observe Local Time Flag

This command programs the local time observed flag. If the local time flag is enabled, the TFP

adjusts its time by the local time offset. Note that the Generator Time is also affected by this setting.

See Command 0x1d for programming local time offset.

Byte Type Item Value or Range
0 UINT8 ID 0x40

1 UINT8 Flag 0 or 1

Local TimeObserve Flag:

n 0 = disable

n 1 = enable

Command 0x41: IEEE 1344 Daylight Saving and Local Time Flags

This command queries the daylight saving and local time observed flag. Additionally, this command

is used to set the IEEE 1344 TimeCode daylight saving observed flag. Use this command in con-

junction with Command 0x19.

Byte Type Item Value or Range
0 UINT8 ID 0x41

1 UINT8 Flag 0x00 - 0xff

Flag:

n bit0 = reserve

n bit1 = reserve

n bit2 = reserve

n bit3 (0x8) = local time observe flag

n bit4 (0x10) = IEEE 1344 DST observe flag

n bit5 - bit7 = not used

- 53 -

1. PCI/PCIe TFP Hardware

Command 0x43: Select Periodic or DDS Output

This command selects the signal that is output on P1 pin 15. This output may be either the Periodic

(heartbeat) signal or the DDS (frequency synthesizer) signal. Note that this selection is restored at

power-up from NV memory.

Byte Type Item Value or Range
0 UINT8 ID 0x43

1 UINT8 Per/DDS see below

n 0 = Periodic

n 1 = DDS

Command 0x44: Periodic or DDS Output Enable

This command controls the Periodic or DDS signal that is output on P1 pin 15. This output may be

either on or off based on the selection.

Note: that this selection is restored at power-up from NV memory.

Byte Type Item Value or Range
0 UINT8 ID 0x44

1 UINT8 Dis/En see below

n 0 = Disabled

n 1 = Enabled

Command 0x45: DDS Divide Select

The DDS frequency synthesizer's divider can be used to divide the selected input down to generate

lower or fractional frequencies. Selectable decade divides that range from divide by 1E0 through

divide by 1E7 are available. The divider will also allow for fractional frequency outputs where the divid-

er's input source is decimal shifted by up to 7 places. The frequency synthesizer's divider is the out-

put signal provided on P1 pin 15.

Note that this selection is restored at power-up from NV memory.

Byte Type Item Value or Range
0 UINT8 ID 0x45

1 UINT8 Div val see below

- 54 -

1.5. Dual-Port RAM Interface

n 0= divide by 1,

n 1= divide by 10,

n 2= divide by 100,

n 3= divide by 1000,

n 4= divide by 10000,

n 5= divide by 100000,

n 6= divide by 1000000,

n 7= divide by 10000000

n F = divide by value in Period Register (when selected, refer to command 49)

Command 0x46: DDS Divide Source

The frequency synthesizer's divide chain has 3 possible input sources.

Byte Type Item Value or Range
0 UINT8 ID 0x46

1 UINT8 Div sel see below

n 0 =DDS
n 1 =Multiplier (DDS x multiplier)
n 2 =100MHz (100MHz PLL)

Command 0x47: DDS Synchronization Mode Select

The DDS frequency synthesizer's divider has 2modes of operation, Fractional and Continuous. Frac-

tional mode allows for fractional frequencies to be generated that are time synchronized only when a

change is made to the DDS frequency but never again, allowing for non-integer rates. Continuous

mode should be used for integer rates only where the frequency synthesizer and divider are syn-

chronized each second. Note that integer frequency rates may use the fractional mode and it will

remain on time if the unit does not adjust phase using a jamsync. Note that this selection is restored

at power-up from NV memory.

Byte Type Item Value or Range
0 UINT8 ID 0x47

1 UINT8 sync sel see below

l 0 = Fractional (synchronizes only once - allows fractional rates)
l 1 = Continuous (synchronizes every second - integer frequencies)

- 55 -

1. PCI/PCIe TFP Hardware

Command 0x48: DDS Multiplier Value

The DDS frequency synthesizer has the ability to multiply its output by 1, 2, 3, 4, 6, 8, 10 or 16. Note

that the DDS frequency must be high or low enough for themultiplier to operate correctly (see Input

Range inMHz below). Note that this selection is restored at power-up from NV memory.

Byte Type Item Value or Range
0 UINT8 ID 0x48

1 UINT8 mult sel see below

Value Input RangeMHz

0x1 = DDS x1 22- 150

0x2 = DDS x2 11- 75

0x3 = DDS x3 8- 56

0x4 = DDS x4 6- 38

0x6 = DDS x6 5- 23

0x8 = DDS x8 5- 19

0xa = DDS x10 5- 15

0x10 = DDS x16 5- 10

Note that when usingMultiplier Mode, the DDS resolution is reduced to 1/32 Hz x multiplication fac-

tor.

Command 0x49: DDS Period Value

The DDS divider has a selectablemode called PeriodMode (command 0x45 value = F). This mode

may be desirable when the DDS cannot be set to the exact frequency but a period value, based on

the period of the DDS rate, will be exact. Note that this value is restored at power-up from NV mem-

ory.

Byte Type Item Value or Range
0 UINT8 ID 0x49

1-4 UINT32 Period val 0x0 to 0x00FFFFFF*

* (4 byte data, 3 lower bytes used)

Refer to section 1.3.3. Divider Mode for an example using the PeriodMode divider.

Command 0x4A: DDS Tuning Word

The DDS frequency is set with this command. The desired frequency x32 = DDS TuningWord.

Frequencies higher than 22MHz should be attained usingMultiplier Mode (0x48, 0x46 commands).

Note that this value is restored at power-up from NV memory.

- 56 -

1.5. Dual-Port RAM Interface

Byte Type Item Value or Range
0 UINT8 ID 0x49

1-4 UINT32 DDS val 0x0 to 0x3FFFFFFF

Refer to section 1.3.3. DDS Output for details and an example on setting the DDS tuning word.

Note that the output of the DDS circuitry is capable of creating interrupts.

Command 0x4F: PCI Firmware Part Number (request only)

This command allows the user to request the TFP firmware part number. Use this command in con-

junction with Command 0x19.

Byte Type Item Value or Range
0 UINT8 ID 0x4f

1 UINT8 'P' 'P' 0x50

2 UINT8 'C' 'C' 0x43

3 UINT8 'I' 'I' 0x49

4 UINT8 '-' 'E' 0x2d or 0x45

5 UINT8 'v' 0x76

6 UINT8 '2' 0x32

Command 0xF6: TFP Model Identification (request only)

This command queries the PCI family TFP part number. Use this command in conjunction with Com-

mand 0x19. Both the PCI-V2 and PCIe cards are shown.

Byte Type Item Value or Range
0 UINT8 ID 0xf6

1 UINT8 Model 'B'

2 UINT8 Model 'C'

3 UINT8 Model '6'

4 UINT8 Model '3'

5 UINT8 Model '5' or '7'

6 UINT8 Model 'P'

7 UINT8 Model 'C'

8 UINT8 Model 'I'

Model:

n “BC635PCI” = TimeCode (same for bc635PCIe)

n “BC637PCI” = TimeCode andGPS (same for bc637PCIe)

- 57 -

1. PCI/PCIe TFP Hardware

Command 0xFE: TFP Serial Number (request only)

This command queries the TFP serial number. Use this command in conjunction with Command

0x19.

Byte Type Item Value or Range
0 UINT8 ID 0xf7

1-4 UINT32 SN 0x00 - 0xffffffff

1.6. Inputs and Outputs

1.6.1. TFP I/O Connector Signals

The TFP products have the following signals connected to their 15 pin D-sub connectors. Refer to

Table 4 for the pin out assignments. Note that a few of these pins are dual-purposed with the func-

tions separated with a" /", see pins 10, 14, and 15 below.

Figure 1-10

Table 4: Signal I/O Connector

Pin Direction Signal
1 input External 10MHz input

2 n/a Ground

3 output Strobe output

4 output 1 PPS output

5 output TimeCode output (AM)

6 input External Event input

7 input TimeCode input (AM)

8 n/a Ground (Recommended TimeCode return)

9 output Oscillator Control Voltage output

10 input TimeCode input (DCLS) / Event2 input

11 output TimeCode output (DCLS)

12 n/a Ground

13 output 1, 5, 10MHz output

14 input External 1 PPS input / Event3 input

15 output Periodic / DDS output

- 58 -

1.6. Inputs andOutputs

1.6.2. bc635PCIe and bc637PCIe Accessories

Signal Breakout Kit

The Symmetricommodel bc63x PCI/PCIe Signal Breakout Board is a development tool for use with

the bc635PCI-V2, bc637PCI-V2, bc635PCIe, and bc637PCIe Time and Frequency Processors

(TFP) boards.

The Signal Breakout Boards provide a user-friendly interface by providing BNC connections tomost

of the I/O signals with the exceptions being the 10MHz external oscillator input and the external oscil-

lator voltage control output, which are available on a 3-pin Molex connector. The 3-pin connector on

the breakout board is Molex part number 0022232031 (2.54mm (.100") Pitch KK® Solid Header, Ver-

tical, with Friction Lock). This connector mates with Molex part number 0022012031 (2.54mm (.100")

Pitch KK® Crimp Terminal Housing, 3 Circuits) usingMolex part number 0008500113 pins (KK®

Crimp Terminal, 22-30 AWG), not supplied.

The Breakout Kit consists of 2 PC boards where part number 089-00133-000 connects to the TFP via

amale 15-pin D-sub connector. This board provides a separation between the TFP’s high frequency

signals and the lower frequency signals. The 089-00133-000 board has BNC connectors for the Peri-

odic/DDS output and the 1, 5, 10MPPS output as well as a 3-pin Molex interface for the 10MHz

external oscillator input and the external oscillator voltage control output. This board also provides an

interface to the other 8 signals via amale 9-pin D-sub that connects to part number 089-00135-000 via

a 9-pin extension cable.

The 089-00135-000 board provides 8 BNC connections to the lower repetition rate/frequency signals

from the TFP. This board can bemounted in a 19” rack enclosure or may be cut to fit into a½ rack

system. Please note that the 9-pin extension cable provided with the kit (6 feet) has been selected as

the optimum length interconnect between the 2 breakout boards. The fast edge rate from the digital

drivers on the TFP board coupled through longer than 6 foot lengths may produce undesirable effects

on the TFP’s digital input lines.

- 59 -

1. PCI/PCIe TFP Hardware

Figure 1-11 Large Breakout Board (top), and Small Breakout Board (bottom)

Figure 12: Large Breakout Board schematic

- 60 -

1.6. Inputs andOutputs

Figure 1-13 Small Breakout Board schematic

Breakout Cables

Breakout cables with connectors simply access to the in and out timing signals of the PCIe card.

These labeled cables mitigate the need to create special cables during project develoment and assure

the correct timing signals are being accessed. There are two forms of breakout cable as follows.

- 61 -

1. PCI/PCIe TFP Hardware

"D" to 6-BNC Breakout Cable, see cable (C) below for signal information

"D" to 5-BNC Breakoput Cable, see cable (A and B) below for signal information

- 62 -

1.7. GPS Receiver Interface

Timing Input/Output Breakout cable and Patch Panel BNC Map

"D" to

5-BNC

(A)

"D" to

5-BNC

(B)

"D" to

6-BNC

(C)

Patch/

Breakout

Outputs

TimeCode (AM) X X X X

TimeCode (DCLS) X X

1, 5, 10MHz X

Heartbeat/DDS X X

Strobe X X

1 PPS X X X X

Oscillator Control Voltage X

Inputs X

TimeCode (AM) X X X X

TimeCode (DCLS): Event2 X

External Event1 X X X X

External 1 PPS; Event3 X X

External 10MHz X

Breakout cable Part numbers

(A) BC11576-1000

(B) BC11576-9860115

(C) PCI-BNC-CCS

1.7. GPS Receiver Interface

1.7.1. General

Themost important aspects of using GPS equipment is antenna position. TheGPS antennamust be

located in an area that has a clear view of the sky. TheGPS signals cannot penetrate foliage or struc-

tures. A good antenna position will provide optimal timing performance. See "1.2. Installation" on

page 10 for detailed installation instructions.

- 63 -

1. PCI/PCIe TFP Hardware

1.7.2. GPS Timing Mode (Mode 6) Characteristics

n The 1 PPS signal generated by the GPS Receiver provides the timing reference for all timing func-

tions.

n The 10MHz oscillator is disciplined to the GPS 1 PPS signal whenever the receiver is tracking a

sufficient number of satellites. If too few satellites are tracked then the TFP will flywheel.

n The TFP extracts major time and satellite tracking status information from data packets sent from

theGPS receiver. By default, the TFP provides UTC time to the user. The user can select GPS

time instead by issuing the DPRAMCommand 0x33 (Select GPS Time Format) described in

"Command 0x33: Set GPS Time Format (bc637 only)" on page 52.

n The TFP provides a communications pathway between the user and theGPS receiver. This path-

way is most often used to receive GPS data packets for position, velocity, andGPS system

status.

1.7.3. Communicating With the GPS Receiver

The dual-port RAM (DPRAM) interface, described in "1.5. Dual-Port RAM Interface" on page 35 pro-

vides the communications pathway between the user and theGPS receiver. Using DPRAM com-

mands and the DPRAMGPS Packet Area, the user can send and receive GPS data packets. A GPS

data packet consists of a packet length byte, a packet ID byte, and zero or more data bytes. A packet

length of zero indicates that no valid packet ID and data bytes are present. TheGPS data packet

structure is summarized below:

Byte Item
0 packet length = N = number of packet data bytes + 1 (for the packet ID byte)

1 packet ID

2 - N packet data bytes

TheGPS packet IDs and packet data formats are described later in this section and are taken from

Trimble Navigation's manuals. The user can determine the packet length from the documentation.

The documentation describes a packet structure that includes, in addition to the packet ID and packet

data bytes, header and trailer bytes and byte-stuffing/unstuffing. The TFP automatically adds (when

sending packets) and removes (when receiving packets) the header and trailer bytes and handles all

byte-stuffing/unstuffing operations. The TFP user should be concerned with the packet length, packet

ID, and packet data bytes only.

Sending GPS Data Packets to the GPS Receiver

To send aGPS data packet to the receiver, use the DPRAM command “Send Packet to GPS

Receiver” (command ID 0x30). The format of this command is shown below:

- 64 -

1.7. GPS Receiver Interface

Byte Type Item Value or Range
0 UINT8 command ID 0x30

1 UINT8 packet length 1 - 255

2 UINT8 packet ID 0x00 - 0xFF

3 - N UINT8 packet data bytes 0 - 255

GPS packet data consists of various integer and floating-point data types. The user must convert

these data types to an array of bytes.

Receiving GPS Data Packets from the GPS Receiver

The DPRAMGPS Packet Area holds packets received from theGPS receiver. The TFP writes GPS

packets to this area upon user request. The format of the packets in the GPS Packet Area is shown

below:

Byte Type Item Value or Range
0 UINT8 packet length 1 - 255, 0 = no valid packet

1 UINT8 packet ID 0x00 - 0xFF

2 - N UINT8 packet data bytes 0 - 255

There are two DPRAM commands that retrieve GPS Packets. These commands are described

below. The TFP sets ACK register bit two whenever it writes a GPS packet to the GPS Packet Area.

The transition of ACK register bit two from 0 to 1 is interrupt source four (GPS Packet Available). The

user must clear ACK register bit two.

Retrieve Packet from GPS Receiver (Command 0x31)

This command allows the user to retrieve aGPS packet (i.e., position, velocity, status, etc.) from the

GPS receiver by specifying the packet ID of the GPS packet of interest. Packets that can be

retrieved with this command are listed below. Packets not found on this list must be retrieved with

Command 0x32. The format of Command 0x31 is shown below:

Byte Type Item Value or Range
0 UINT8 command ID 0x31

1 UINT8 packet ID 0x00 - 0xFF

Some of themore commonly requestedGPS packets are sent from theGPS receiver to the TFP

either periodically (e.g., position fix) or whenever they change (e.g., satellite selection.) The TFP mon-

itors these packets and stores them in on-board RAM so that they can be transferred to the user

immediately upon request. The rest of the GPS packets must be retrieved from theGPS receiver by

the TFP whenever the user requests them. Note that it can take 10's or 100's of milliseconds for the

- 65 -

1. PCI/PCIe TFP Hardware

TFP to retrieve a packet from theGPS receiver. GPS packets that aremonitored by the TFP are iden-

tified below.

Packet ID Monitored Packet Description
0x41 No GPS Time

0x42 Yes Single-Precision Position Fix, XYZ ECEF

0x43 Yes Velocity Fix, XYZ ECEF

0x44 Yes Satellite Selection

0x45 No Firmware Version

0x46 Yes Health of GPS receiver

0x47 No Signal Level For All Satellites*

0x48 No GPS SystemMessage

0x49 No Almanac Health Page For All Satellites

0x4A Yes Single-Precision Position Fix, Lat/Long/Alt

0x4B Yes Machine/Code ID And Additional Status

0x4D No Oscillator Offset

0x4F No UTC Parameters

0x55 No I/OOptions

0x56 Yes Velocity fix, East-North-Up (ENU)

0x57 No Information About Last Computed Fix

0x5E No Additional Fix Status

0x83 No Double-Precision Position Fix, XYZ ECEF

0x84 No Double-Precision Position Fix, Lat/Long/Alt

* Note: The first byte returned will be the length of the packet.

The retrieve packet commandworks as follows:

n If the requested packet is beingmonitored and a local copy exists, then the TFP transfers its local

copy of the packet to the DPRAMGPS Packet Area, sets ACK bit 2, then sets ACK bit 0 to

acknowledge the retrieve packet command.

n If the requested packet is not beingmonitored or if the TFP has not yet received amonitored

packet, then the TFP must request the packet from the receiver by sending the appropriate

request packet. Once the request has been sent, the TFP sets ACK bit 0 to acknowledge the

retrieve packet command. Later, when the receiver responds with the retrieved packet, the TFP

transfers the packet to the DPRAMGPS Packet Area and sets ACK bit 2. If the receiver does not

respond to the request within a timeout period (typically 3 seconds), then the TFP sets the packet

length byte in the DPRAMGPS Packet Area to zero and sets ACK bit 2.

n If the retrieved packet ID is not on the list above, the TFP sets the packet length byte in the

DPRAMGPS Packet Area to zero, sets ACK bit 2, then sets ACK bit 0.

- 66 -

1.7. GPS Receiver Interface

Manually Request Packet from GPS Receiver (Command 0x32)

This command is a hybrid of commands 0x30 and 0x31. With this command the user specifies the

packet length and ID of a packet sent by the receiver (response packet) and specifies the packet

length, ID, and data for the packet to be sent to the receiver (request packet.) The TPF sends the

request packet to the receiver and transfers the response packet to the DPRAMGPS Packet Area

when it arrives. If the response packet ID is 0x00 then the TFP will ignore the response, in which

case, this commandwould be functionally identical to Command 0x30. The TFP sets ACK bit 0 once

the request packet is sent to the receiver. Later, when the response packet has been transferred to

the DPRAMGPS Packet Area, the TFP sets ACK bit 2. As with Command 0x31, if the receiver fails

to respond within a timeout period, the bc637PCI-V2 sets the packet length in the DPRAMGPS

Packet Area to zero and then sets ACK bit 2.

Note: A response packet length of 0 (ZERO) (Byte 1) will return any packet with the corresponding

response packet ID (Byte 2). This is useful for packets, like 0x47, that return variable length

responses.

Byte Type Item Value or Range
0 UINT8 command ID 0x32

1 UINT8 response packet length 1 - 255

2 UINT8 response packet ID 0x00 - 0xFF

3 UINT8 request packet length 1 - 255

4 UINT8 request packet ID 0x00 - 0xFF

5 - N UINT8 request packet data bytes 0 - 255

As an example of this command, let us suppose the user wants to retrieve packet 0x5B (satellite

ephemeris status) for satellite number six. The receiver sends packet 0x5B in response to packet

0x3B (request satellite ephemeris status.) Packet 0x3B specifies the PRN number for the satellite of

interest, in this case, satellite number six. The appropriate command structure for this example is

shown below:

Byte Item Value
0 command ID 0x32

1 response packet length 17

2 response packet ID 0x5B

3 request packet length 2

4 request packet ID 0x3B

5 satellite PRN number 6

Byte Item Value
0 command ID 0x32

1 response packet length 0

2 response packet ID 0x47

3 request packet length 1

- 67 -

1. PCI/PCIe TFP Hardware

Byte Item Value
4 request packet ID 0x27

1.7.4. Position Fix Modes

An important aspect of GPS operation is the selection of the position fix mode (GPS packet 0x22.)

TheGPS receiver supports the following four GPS position fix modes.

Position Fix Mode 0

This mode uses as many satellites as are available to perform both position fixes and timing func-

tions. Confusioncan arise because this mode selection interacts with the dynamics code selection

(GPS packet 0x2C.) If a non-static dynamics code is selected then only three or four satellites will be

used because theGPS sensor assumes that it is moving. If only three satellites are usable then alti-

tude will be held constant. If a static dynamics code is entered thenmode zero will use three or four

satellites for a navigation solution as previously, however, if only one or two satellites are available

the sensor will use the satellite with the highest elevation to continue calculating bias and bias rate

(the timing functions will continue unimpaired). It is good therefore, to enter a static dynamics code if

the sensor is static.

Symmetricom recommends using this static mode if the card is not on amoving installation.

Position Fix Mode 1

In this mode, a user-specified satellite is used for timing functions. If mode 1 is selected, only a single

satellite will be used for timing, and the current position will be assumed accurate and static.

GPS packet 0x34 allows the satellite associated with mode one to be selected. This packet has one

data byte that specifies the PRN of the desired satellite. If a data byte value of 0 is entered, then the

sensor will always track the single satellite that has the highest elevation within the constellation in

view.

It is good to operate in a single-satellite highest elevationmode for timing applications. The greatest

contribution to timing error is the electron content variation in the path between the satellite and the

receiver. Selecting the highest elevation satellite minimizes this variation.

Position Fix Mode 3 and 4

Thesemodes are rarely used for timing applications unless the user operational platform is dynamic.

Mode 3 is particularly useful in amarine environment where the sensor altitude is relatively constant.

1.8.5. GPS Default Parameters

The TFP sends the following GPS packets to the GPS receiver on reset or whenever the Timing

Mode is changed to GPS TimingMode 6.

- 68 -

1.9. Legacy and New Generation Cards

Set Operating Parameters (GPS packet 0x2C)

Packet Data Item Value
Packet ID 0x2c

Dynamics Code 4 (Static)

Elevation AngleMask 0.1745 Radians (10 Degrees)

Signal Level Mask 6.0

PDOP Mask 12.0

PDOP Switch 8.0

Set High-8 / High-6 Mode (GPS packet 0x75)

Packet Data Item Value
Packet ID 0x75

Mode 0 (high-8)

Set I/O Options (GPS packet 0x35)

Packet Data Item Value
Packet ID 0x35

Position 0x03

Velocity 0x03

Timing 0x00

Auxiliary 0x00

To change any of the packet 0x35 options, keep the following inmind: The TFP monitors position and

velocity packets so the “position” and “velocity” options should be sent with bits 0 and 1 set; the TFP

extracts major time from time packets broadcast by the GPS receiver so the “timing” option should be

sent with bits zero, one, and two cleared.

1.9. Legacy and New Generation Cards

This section covers differences between legacy bc635/637PCI-U (PCI-U) cards and the new gen-

eration bc635/637PCI-V2 (PCI-V2) and bc635/637PCIe (PCIe) cards.

Both the legacy and the new generation cards map both register and DPRAM intomemory spaces,

but there is a difference in the PCI base address register (BAR)mapping.

- 69 -

1. PCI/PCIe TFP Hardware

1.9.1. PCI Bar Mapping

PCI-U PCI-V2 and PCIe
bar0 = 32-bit register space bar0 = reserved

bar1 = 8-bit dpram space bar1 = reserved

bar2 = 32-bit register space

bar3 = 8-bit dpram space

1.9.2. Differences Between Versions -U and New Generation Cards

PCI-U PCI-V2 and PCIe
Standard oscillator VCXO TCXO (better holdover)

1pps duty cycle 63 uS 60 uS

Heartbeat (periodic)

duty cycle
Adjustable square wave

Field program

update
Replace flash

l Serial port download for early versions of

bc635PCI-V2 and bc637PCI-V2.
l Through the host PCI(e) bus for later models of

bc635PCI-V2, bc637PCI-V2, and all models of

bc635PCIe, and bc637PCIe.

OCXO option +12V +5V

OCXO option sine wave square wave

Time at power-on elapsed RTC

Time code input

level (AM)
5V to 5V P-P 1V to 8V P-P

Time code output

level (AM)
4V P-P 50 ohm 3V P-P 50 ohm

NV (Restored at

Power-on)
not supported many parameters restored

Strobe output tim-

ing
1 uS late on time

bc637GPS

receiver
Ace III SKII (Lassen)

Battery disconnect

jumper
No Yes

DDS (frequency

synthesizer) circuit
No Yes

TimeCode Inputs No IRIGG, E, XR3 & 2137

TimeCodeOutputs No IRIG A, G, E, NASA 36, XR3 & 2137

n The PCI-V2 and PCIe cards transition through end of year properly, version -U did not.

n SET CLOCK Command (10 uSec Advance Retard) is not implemented on PCI-V2 or PCIe

design.

n PCI Special Boot mode is not supported on the PCI-v2 or PCIe design.

- 70 -

1.9. Legacy and New Generation Cards

The user is no longer required to enter UNIX seconds of Leap Event whenmanually entering Leap

Seconds settings. The PCI-V2 and PCIe cards use Year and Time of Year information to determine

when Leap Events will occur.

- 71 -

2. Windows Application Programs

2. Windows Application Programs

2.1. bc635PCIcfg.exe Windows Application Program

2.1.1. General

Configuration programs bc635PCIcfg.exe, bc637PCIcfg.exe and a System Clock Utility Tray-

Time.exe are included with the TFP module.

When installing the SW from the supplied CD as described in "1.2.5. Installation UnderWindows "

on page 14, the installer will create a folder in 'program files' titled 'bc635PCI Configuration Software'

containing bc635PCIcfg.exe, TrayTime.exe, and bc635pciReadEvent.exe. The bc635PCIcfg

clock.exe icon is also copied to the system desktop.

When installing the SW, the installer will create a folder in 'program files' titled 'bc637PCI con-

figuration Software' containing bc635PCIcfg.exe, TrayTime.exe, and bc635pciReadEvent.exe. Icons

are copied to the system desktop.

The System Clock Utility, TrayTime.exe, (described later in this chapter) is a system tray utility that

queries the TFP and periodically sets the computer's system clock at a user-defined interval. The util-

ity may run either as a standard application or as aWindows Service.

The bc635PCIcfg.exe program allows the user to access the TFP card and demonstrates the card's

functionality. This program is designed to operate under Microsoft Windows XP/Vista. This utility

may be used to query current settings, modify settings, and retrieve or monitor data generated by the

card. This program requires the runtime driver to be available in order to operate. The background win-

dow of the program provides time, as well as information regarding the clock status, interrupt bit

status, and clock reference source type. A full menu system (described in the following paragraphs)

has been designed to provide access to the card. Each associated pull-downmenu provides a logical

grouping of commands. Most of the pull-downmenus also include a Current Settings selection that

provides a review of the logical group.

The bc637cfg.exe program allows the user to access the GPS functions of the bc637PCI-V2 and

bc637PCIe TFPs.

2.1.2. Quickstart Guide to Operating bc635PCIcfg.exe

Click on the desktop icon to execute the program bc635PCIcfg.exe that is an interface program for

both the bc635 and bc637 cards. The bc637may be set to GPS mode, and will initially display time

based on the Real TimeClock until GPS lock is achieved. The bc637 unit is locked to GPS, and

decoding time when the tracking LED in the GUI left-hand corner is green. The bc635may be set to

decode a time code. For testing, youmay set the board timemanually using the Timemenu and

selecting Set Time.

- 72 -

2.1. bc635PCIcfg.exeWindows Application Program

Figure 2-1: bc637 set to GPS mode

Figure 2-2: bc635 set to TimeCodemode

- 73 -

2. Windows Application Programs

2.1.3. bc637PCIcfg Program Menu Interface

Figure 2-3: bc637PCIcfg Program

File Menu

The File menu group provides a few common functions associated withWindows applications.

Refer to Figure 2-3

File > Open Device

Each instance of the bc635PCIcfg.exe program communicates with only one device at a time. Open

Device allows the user to open and operate any of up to four installed TFP devices. By default, the

program opens and operates using the first device in the system (Device 0). By selecting a new

device to open, the program will close the currently selected device before opening the newly

requested device. This commandwill also clear the interrupt mask.

Select Device 0, 1, 2 or 3 and click OK. Use Device 0 if only 1 board is installed.

File > Interrupt Start

This command allows the user to start an interrupt service routine capable of handling the selected

hardware interrupts created by the TFP module. After starting the interrupt service routine, the user

may initiate any interrupt source located under “Signals > Interrupts”. For more information on inter-

rupts, see theMASK and INSTAT registers described in "MASK Register (0x18)" on page 31.

File > Exit

This command allows the user to close the device and exit the program. This commandwill also clear

the interrupt mask.

- 74 -

2.1. bc635PCIcfg.exeWindows Application Program

Time Menu

The Timemenu group, see Figure 2-4, provides access to functions that control how the TFP main-

tains time data. These functions allow the user to select where to obtain time data, whether or not to

manipulate the time data and how to present the time data.

Figure 2-4: TimeMenu

Time > Set Mode

The Set Modemenu selection allows the user to change the operatingmode of the installed card.

Selecting this option reveals a secondary menu listing the available operatingmodes of the TFP. The

available mode selections are:

n TimeCode

n Free Running

n External 1PPS

n RTC

n GPS

Note 1: The card automatically increments the Year value, in every operatingmode. For more infor-

mation on setting the card synchronizationmode, refer to "CONTROLRegister (0x10)" on page 28.

Note 2: The bc635 cards do not support GPS mode.

- 75 -

2. Windows Application Programs

Time > Get Binary Time

TheGet Binary Timemenu selection exercises the device time capture registers. Get Binary Time

requests the binary time 25 times, retrieving 25 consecutive timestamps as fast as the system will

allow, and displays them. This function is designed to display binary data only. This command is pro-

vided as a demonstration of the binary time request. For more information on the TimeRegisters,

refer to "1.4.3. Device Register Description" on page 26.

Time > Get Event Time

TheGet Event Timemenu selection exercises the event capture registers of the device. The function

is similar to Get Binary Timewhere 25 consecutive requests aremade to the event register. This func-

tion is designed to display binary data. The bc635PCI-V2 & bc637PCI-V2 card should be set to the

binary time format when executing this function. If the decimal TimeRegister Format is selected, the

major time (in front of the decimal point) will be garbled. Minor time will display correctly.

Time > Set Time

The Set Timemenu selection will set the time on the TFP. Set Time displays the current time, years

through seconds in a decimal format. The user may change any or all of these values and select the

OK button. This commandwill load the time properly regardless of the currently selected time format.

This function is typically used when operating in either the Free Running or External 1PPS modes.

While the functionmay be used when operating in Time code or GPS modes, subsequent time data

received from the selected reference source will overwrite themanually entered time. For information

on Set Major Time, see "Command 0x12: Set Major Time" on page 42.

Time > Set Year

The Set Year menu selection will set the year data without affecting the other time data. Many time

code formats do not include year information in the data. The supported range is 1970 - 2036. Set the

year and click OK. See "Command 0x13: Set Year" on page 42.

Time > Set Local Offset

The Set Local Offset menu selection allows the user to program a local time offset into the TFP. If the

local offset value is nonzero, the device will adjust any reference timing information in order to main-

tain a local time in TFP clock. Use of this function only affects the time data in the TIME registers

described in Chapter1.4. Allowed values are -16 through +16, and can include half hour offsets. See

"Command 0x1D: Set Local TimeOffset" on page 49.

Enter Local Offset in hours (-16 to +16), check Half Hour if necessary and click OK.

Time > Set Prop Delay

The Set Prop Delay menu selection allows the user to compensate for propagation delays introduced

by the currently selected reference source. For example, when the unit is operating in Time code

- 76 -

2.1. bc635PCIcfg.exeWindows Application Program

decodingmode, a long cable runmay result in the input time code having a propagation delay. The

delay value is programmable in units of 100 ns and has an allowed range from -4000000 (advance by

400ms) through +4000000 (retard by 400ms). See "Command 0x17: Set Propagation Delay Com-

pensation" on page 44.

Enter the Propagation Delay and click OK

Time > Set Leap Event

The Set Leap Event menu selection allows the user to program a future leap second event. The user

is not required to enter UNIX seconds of Leap Event whenmanually entering Leap Seconds settings.

The card uses Year and Time of Year information to determine when a Leap Event will occur. In oper-

atingmodes that do not have a time source that provides leap second information, the card will cal-

culate the leap event for UTC midnight of the current month. GPS time and IRIG B 1344 operating

modes provide automatic leap second adjustments, which normally occur on June 30th or December

31st at UTC midnight.

When the leap second insertion transition takes place (add 1 second) the TimeCode output produces

a second 60 followed by second 0. The application program will show 2 second 59s followed by sec-

ond 0.

When the leap second deletion transition takes place (subtract 1 second) the TimeCode output

produces a second 58 followed by second 0. The application program will show second 58 followed

by second 0.

The TFP card uses only the Flag values of Disable, Insertion or Deletion; the Leap Event Time value

is not supported.

See "Command 0x1E: Program Leap Second Event" on page 49.

Time > Time Settings

The Time Settings function allows the user to modify other timing operations. The UTC Corrections

may be enabled or disabled. Enabling UTC Corrections commands the device to include any leap sec-

ond corrections provided by the reference source and act on any leap event data that is present. The

default operation is to use UTC corrections. This function is also used to enable or disable the fol-

lowing options: IEEE Daylight Saving (strips DST bit from IEEE 1344 TimeCode input and output)

and Local TimeOffset (controls the use of Local Offset value). The board time format (Binary or Dec-

imal) is also selected using this function.

Note: the Year Auto Increment cannot be disabled; the year is always incremented when operating

with sources that do not include year information.

See "1.5. Dual-Port RAM Interface" on page 35, commands 0x11, 0x1D, 0x33 and 0x41.

Time > Current Settings

The Current Settings function provides a summary of all the time data relevant to the devices current

settings. In addition to the programmable values, the values of some of the card's timing data are also

- 77 -

2. Windows Application Programs

presented as information points via the UTC Data button. These values include UTC Control, leap

second count, leap second event data and leap second event time.

Settings are:

l TimingMode
l Time Format
l Current Year
l Local Offset
l Propagation Delay
l Daylight Saving Flag
l Local time Flag

Time Code Menu

The TimeCodemenu group, see Figure 2-5, provides access to functions that control how the TFP

card operates while decoding time code. These functions allow the user to control both the time code

decoding, and the time code generating circuits.

Figure 2-5: TimeCode

TimeCode > Decode

The Decodemenu selection allows the user to select the format andmodulation types associated

with an input timing signal. These values control how the device attempts to decode the input time

code. These values may be set regardless of themode but will only be used in time code decoding

mode. The format defines the type of the time code data. Themodulation defines the envelope for the

signal and which input pin the signal will be extracted from. See "Command 0x15: Set Input Time

Code Format" on page 43: Set Input TimeCode Format for supported time codes and command

0x16, which is used to select themodulation type.

- 78 -

2.1. bc635PCIcfg.exeWindows Application Program

TimeCode > Generate

TheGeneratemenu selection allows the user to select the time code format that will be generated by

the TFP. See "Command 0x1B: Set TimeCodeOutput Format" on page 46 for supported time codes.

Detailed performance specifications are outlined in "1.1.4. Specifications and Settings" on page 5

Time code > GenOffset

TheGenOffset menu selection allows the user to add an offset to the time code signal produced by

the TFP. The generator offset only affects the time code generation. This functionality is useful for

driving time code display units to display local time. Allowed values are -16 through +16, andmay

include half hour offsets. See "Command 0x1C: Set Generator TimeOffset" on page 48.

Time code > Current Settings

The Current Settings menu selection provides time code output data summary for:

l Decoding
l Modulation Type
l Generating
l Generator Offset

Signals Menu

This menu group provides access to functions that control various hardware-timing signals.

Figure 2-6: Signals Menu

- 79 -

2. Windows Application Programs

Signals > Heartbeat

The Heartbeat function allows the user to command the TFP to produce a clock signal at a specified

frequency. The heartbeat signal, also referred to as a periodic pulse output (PPO), periodic or pro-

grammable periodic, may be either synchronous or asynchronous to the TFP's 1PPS epoch.

The formula for determining the heartbeat frequency is f = 1,000,000/n1*n2, where n1 and n2 are

greater than or equal to 2 and less than 65536. Synchronous mode aligns the periodic output's rising

edge to rising edge of 1PPS.

Periodic output fractional frequencies (non-integer) should use Asynchronous mode.

Signals > DDS (aka frequency synthesizer)

The DDS output may be selected in place of the periodic rate generator's output. This circuit provides

a square wave output with a frequency resolution of 0.03125 (1/32) Hz. Direct frequency entry of 7 sig-

nificant digits with decimal adjustment up to 7 places or entry of 8 digits with 1 Hz resolution is sup-

ported with the entry in this dialog box. Value range is 1/1e7 (.0000001) to 1e8 (100000000).

Signals > Strobe

The Strobe function allows the user to command the TFP to produce a hardware signal at a particular

time, or at a particular point during a 1 second interval. Whenmajor/minor mode is selected, a hard-

ware signal (1 uS pulse) will be produced when the internal time of the TFP matches the values

entered for themajor andminor strobe registers. Up to 22 bits of binary major timemay be supplied in

addition to themicroseconds loaded in theminor strobe register. This allows strobe signals to be pro-

grammed up to 48 days in advance. This function is designed to operate with the timing format in

binary mode. Whenminor mode is selected, a strobe signal is produced every second when the inter-

nal microsecond count in the TFP matches the value entered in theminor strobe register. The output

of this circuitry is capable of creating a PCI bus interrupt. For details on Strobe programming, see

"1.3.4. TimeCoincidence StrobeOutput" on page 21.

Signals > Events

The Events function allows the user to command the TFP tomonitor a hardware-timing signal. The

source for the signal can be either the External Event input or the Periodic/DDS output. The capture

may be set to occur on either the rising or falling edge. When the selected signal occurs, the time at

which the signal occurred is loaded into the event time registers. The capture lockout checkbox can

be used to control whether or not subsequent signals will overwrite the data in the event time reg-

isters. The output of this circuitry is capable of creating a PCI bus interrupt. See "CONTROLRegister

(0x10)" on page 28 for event programming details.

Note: The capture rate is dependent on the rate that the Software extracts the event times which is

dependent on the operating system and speed of the host computer.

- 80 -

2.1. bc635PCIcfg.exeWindows Application Program

Signals > Frequency

The Frequency function allows the user to control the frequency signal output by the TFP. The avail-

able frequencies are 1, 5 and 10MHz. See the CONTROLRegister described in "CONTROLReg-

ister (0x10)" on page 28 for more detail.

Signals > Interrupts

The Interrupts function allows the user to control the generation of interrupts by the TFP. The detec-

tion of an interrupt will be displayed in the background of themain window by seven LEDs which are

displayed in the upper-right corner. When an interrupt occurs, the program queries the interrupt source

and the associated LED is displayed in red. In order to display consecutive interrupts, the LEDs are

changed back to green once per second. This may result in LEDs only remaining red for a short period

of time.

The default state of the interrupts is OFF. Interrupt programming is described in detail in "MASK Reg-

ister (0x18)" on page 31.

Signals > Current Settings

The Current Settings function provides a summary of all the signal data. In addition to the pro-

grammable values, other values may be presented as information points.

Hardware Menu

See Figure 2-7. This group provides additional access to functions that control the oscillator and its

associated disciplining circuits. These functions modify the actual oscillator control function used to

slave the oscillator to the selected reference signal. This function is not modified during standard oper-

ation.

- 81 -

2. Windows Application Programs

Figure 2-7: HardwareMenu

Hardware > Set Osc Parameters

The Set Osc Parameters function allows the user to select an external oscillator or the on-board oscil-

lator, in addition to enabling/disabling disciplining and jamsyncing. Oscillator selection and control is

described inmore detail in "1.5. Dual-Port RAM Interface" on page 35; commands 20, 21, and 24.

Hardware > Sync RTC to Ext Time

The Sync RTC to Ext Time function updates the RTC circuit time to the current time on the board.

The board contains a separate battery-backed Real TimeClock Circuit (RTC) that may be used to

keep time while the device is powered down.

Hardware > Current Settings

The Current Settings function provides a summary of all the oscillator data. In addition to the pro-

grammable values, other values may be presented as information points.

Special Menu

The Special Menu group provides access to those functions that do not fit in any particular category.

See Figure 2-8. Most of these functions are not used during normal operation.

- 82 -

2.1. bc635PCIcfg.exeWindows Application Program

Figure 2-8: Special Menu

Special > Registers

The Registers function is provided to perform direct reads and writes to the TFP registers. While most

of the functionality available through the registers can be controlled via other aspects of the con-

figurator program, this functionmay be useful for debugging purposes.

Special > Board Reset

The Board Reset function allows the user to reset the TFP device. This command is useful when

starting a test or in the case that unexpected behavior is observed from the card. This function is not

used during normal operation. See "Command 0x1A: Software Reset" on page 46.

Special > Autotime

The Autotime function allows the user to control the data display in the background of themain pro-

gram window. If this function is turned off, the display will stop updating but will continue to show the

reference source type.

Special > Menu

TheMenu command allows the user to switch to an advanced version of themenu. See Figure 2-9.

The advancedmenu selection adds Special menu options, as well as the PCI menu selection.

Warning: The advancedmenu contains operations that may disable the function of the TFP.

Special > Menu > Advanced

- 83 -

2. Windows Application Programs

Figure 2-9: Special Menu

Selecting the advanced Special Menu, opens several new selections:

Special > DP RAM

DP RAM allows reading, writing hex offsets, and values to the dual port RAM.

Special > Packet Offset

Displays the following packet information

Special > Debug

Debug can be turned off or on. Turning debug on, causes the three status lights, (tracking, Phase, and

Frequency), to provide debugging information.

Special > Emulator

The emulator can be turned off or on.

Special > Current Settings

The Special > Current Settings function provides information related to the PCI interface to the board.

This command is useful for determining whether or not the driver has obtained access to the device. It

- 84 -

2.1. bc635PCIcfg.exeWindows Application Program

may also be used to review the PCI mapping of the device onto the bus. The interrupt level selected

during PCI configurationmay also be reviewed.

PCI Menu

In addition to the additional Special Menu selections, a new menu choice PCI is available when the

AdvancedMenu is selected.

Figure 2-10

The PCI menu has the following selections:

n Test DPRAM

n Packet Timing

n Special Boot

n Board Setting

n PCI Config Reg

- 85 -

2. Windows Application Programs

Help Menu

Figure 2-11

l Program Version: shows the versions of the running program.
l Firmware Version: retrieves the firmware version from the TFP.
l Hardware Version: retrieves the hardware version from the TFP.
l Software Driver Version:shows the version opf the driver that is loaded.

- 86 -

2.2. bc637PCIcfg.exeWindows Application Program

2.2. bc637PCIcfg.exe Windows Application Program

2.2.1. General

In addition to the configuration program (bc635PCIcfg.exe), and the System Clock Utility (Tray-

Time.exe), the TFP includes aGPS configuration program (bc637PCIcfg.exe). When installing the

SW from the supplied CD, as described in "1.2.5. Installation UnderWindows " on page 14, the

installer will create a folder in 'program files' titled 'bc637PCI configuration Software' containing

bc635PCIcfg.exe, bc637PCIcfg.exe, TrayTime.exe, and bc635pciReadEventexe. The

bc635PCIcfg.exe and bc637PCIcfg.exe clock icons are copied to the system desktop.

The bc637PCIcfg.exe program allows the user to access the TFP and demonstrates the boards GPS

functionality. This program is designed to operate under Microsoft Windows XP/Vista. This utility

may be used to query current settings, modify settings, and retrieve or monitor data generated by the

card and/or the GPS receiver. This program requires that the runtime driver be available in order to

operate. The background window of the program provides current time, as well as information regard-

ing the clock status and clock reference source type. A full menu system (described in the following

paragraphs) has been designed to provide access to the card and theGPS receiver. Each associated

pull-downmenu provides a logical grouping of commands.

2.2.2. Quickstart Guide to Operating bc637PCIcfg.exe

1. Verify that the antenna is connected to the SMB connector on the rear of the card.
2. Click on the bc637PCIcfg.exe desktop icon to execute the program. The card will start counting

using the RTC value, until lock is achieved. The TFP unit is locked to GPS, and decoding UTC

timewhen the tracking LED, indicated by the letter “T” in the GUI shown in Figure 2-13, is green.

Figure 2-13: bc637Menus

- 87 -

2. Windows Application Programs

Figure 2-14: bc637 Counting Time in Flywheel State

2.2.3. bc637PCIcfg.exe Program Menu Interface

Figure 2-15: File

File Menu

The File menu group provides a few common functions associated withWindows applications.

File > Open

Each instance of bc637PCIcfg is designed to communicate with only one device at a time. Open

allows the user to open and operate any of up to four installed TFP cards. By default, the program

opens and operates using the first device in the system (Device 0). By selecting a new device to

open, the program will close the currently selected device before opening the newly requested device.

This commandwill also clear the interrupt mask.

- 88 -

2.2. bc637PCIcfg.exeWindows Application Program

File > Save

This command allows the user to save the values to the GPS receiver located under “Save > Save

variable”. For more information on theGPS variables, see: GPS Receiver Interface.

Figure 2-16: File Save

File > Load

This command allows the user to save the values to the GPS receiver located under “Save > Load var-

iable”. For more information on theGPS variables, see: GPS Receiver Interface.

Figure 2-17: File Load

File > Exit

This command allows the user to close the device and exit the program.

- 89 -

2. Windows Application Programs

Time Menu

The Timemenu group, see Figure 2-18, provides access to functions that control how the TFP card

maintains time data. These functions allow the user to select where to obtain time data, whether or

not to manipulate the time data, and how to present the time data.

Figure 2-18: TimeMenu

Time > Set Board Time

The Set Board Timemenu selection will set the time on the TFP. The Set Board Time interface GUI

displays the current time, years through seconds in a decimal format. The user may change any or all

of these values and select the OK button. This function is typically used when operating in either the

Free Running or External 1PPS modes. While the functionmay be used when operating in Time code

or GPS modes, subsequent time data received from the selected reference source will overwrite the

loaded time when lock is achieved. This function accesses the DPRAM command 0x12, Set Major

Time. For information on Set Major Time, see "Command 0x12: Set Major Time" on page 42.

Time > Set Receiver Time

The Set Receiver Timemenu selection will acquire time from the TFP device and set the time on the

GPS receiver. This will improve the initial time required to track satellites. This command accesses

the set GPS time packet 0x2E as described in GPS Receiver Interface.

Warning: Be sure to set an accurate “GMT” time on the TFP module before issuing this command.

Time > Receiver Time

The Receiver Timemenu selection will return time from theGPS receiver. This command requests

current time via packet 0x21, and returns packet 0x41, as described in GPS Receiver Interface.

- 90 -

2.2. bc637PCIcfg.exeWindows Application Program

Status Menu

The Status menu group, (see Figure 2-19), provides access to the GPS data packets that provide the

GPS receiver status data. These commands access the data packets that return packets 46, 47 and

4F (as described in GPS Receiver Interface).

Figure 2-19: Status Menu

Mode Menu

TheModemenu group, (see Figure 2-20) provide access to the various functional modes of the TFP

and theGPS receiver.

TheMode > Set BoardModemenu selection allows the user to change the operatingmode of the

installed TFP. Selecting this option reveals a secondary menu, listing the available operatingmodes

of the TFP. The available mode selections are:

n Time code

n Free Running

n External 1PPS

n GPS

Formore information on setting the card synchronizationmode, refer to "CONTROLRegister (0x10)"

on page 28. To verify themode, select Mode > Request BoardMode.

TheMode > Set Position Fix Modemenu selection allows the user to change theGPS receiver mode.

TheGPS receiver modes are explained inmore detail in GPS Receiver Interface. To verify themode,

select Mode > Request Position Fix Mode.

- 91 -

2. Windows Application Programs

Figure 2-20: ModeMenu: Set BoardMode

Position Menu

The Positionmenu group, (see Figure 2-21) provide access to position data from theGPS receiver.

Both LLA and XYZ position formats are supported. These packets are addressed inmore detail in:

GPS Receiver Interface, packets 0x2B, 0x31, 0x42, and 0x4A.

Figure 2-21

Options Menu

TheOptions menu group, (see Figure 2-22) provide access to set or request the input and output

options for the GPS receiver. These commands are described inmore detail in GPS Receiver Inter-

face, packets 0x35, 0x43, and 0x56.

- 92 -

2.2. bc637PCIcfg.exeWindows Application Program

Figure 2-22: Options Menu

Request Menu

The Request menu group, (see Figure 2-23) provide access to data from theGPS receiver. These

commands are described inmore detail in GPS Receiver Interface, packets 0x40, 0x4C, and 0x4D.

Figure 2-23: Request Menu

Request > Almanac Data

This command provides almanac data for a single satellite.

Request > Oscillator Offset

This packet provides the receiver oscillator offset in Hertz at the carrier. The packet format is

described in GPS Receiver Interface, packet 0x4D.

Request > Operating Parameter

- 93 -

2. Windows Application Programs

This packet provides several operating parameters for the GPS receiver, and includes the dynamics

code, elevation anglemask, signal level mask, and PDOP mask. These parameter formats are

described in GPS Receiver Interface, packet 0x4C.

Send Menu

The Sendmenu group, (see Figure 2-24), allows the user to set the 2-D altitude and receiver operating

parameters on theGPS receiver. These commands are described inmore detail in GPS Receiver

Interface, packets 0x2A and 0x2C.

Figure 2-24: SendMenu

Send > Altitude for 2-D Mode

This packet provides the altitude used for 2-D (3-satellite) mode, and is used until a 3-D fix is com-

pleted. SeeGPS Receiver Interface, packet 0x2A for more detail.

Send > Operating Parameters

This packet is used to optionally set the GPS receiver operating parameters, requesting the current

values after they are set. SeeGPS Receiver Interface, packet 0x2C for more detail.

- 94 -

2.2. bc637PCIcfg.exeWindows Application Program

Reset Menu

The Sendmenu group commands, (see Figure 2-25) are used to reset various components on the

TFP card and theGPS receiver.

Figure 2-25: Reset menu

Reset > Board Reset

This commandwill reset the TFP card per the DPRAM command 0x1A, and is described in "Com-

mand 0x1A: Software Reset" on page 46.

Reset > Receiver Reset

This command performs aGPS receiver software reset, which is equivalent to cycling power. The

self-test function is performed as part of the reset operation. This command is described inmore

detail in: GPS Receiver Interface, packet 0x25.

Reset > Battery back-up

This packet commands theGPS receiver to clear data and perform a software reset. This command

is described inmore detail in GPS Receiver Interface, packet 0x1E.

Reset > Oscillator offset

This packet commands theGPS receiver to clear the stored oscillator offset. This command is

described inmore detail in GPS Receiver Interface, packet 0x1D.

- 95 -

2. Windows Application Programs

Help Menu

The Helpmenu group provide access to data from the TFP hardware andGPS receiver.

Figure 2-26: HelpMenu

Help > Board Firmware Version

The Board Firmware Version command returns information from the TFP firmware. For the firmware

data format, see "Command 0x4F: PCI Firmware Part Number (request only)" on page 57.

Help > Receiver Firmware Version

The Receiver Firmware Version returns firmware version information for the GPS receiver. The data

format is covered in GPS Receiver Interface, packet 0x45.

Help > About bc637PCI

The About bc637PCI selection, returns information on the bc637PCIcfg.exe program.

- 96 -

2.3. TraytimeWindows Application Program

2.3. Traytime Windows Application Program

This utility is designed to operate under Microsoft Windows XP/Vista. This system tray utility will

query the TFP and set the system clock on a periodic basis. Double click on the “TrayTimeCPP.exe”

to install. TrayTimeCPP.exe is copied to the same folder as the other configuration software. A small

world icon will show up on the lower right portion of the desktop (where the desktop clock appears in

the taskbar tray). See Figure 2-27. Click on that icon to display the TrayTimeCPP interface window.

Click Setup under Selected Source on the Status tab, and click on Hardware if it has not been

selected as the source for time.

Figure 2-27: Tray Time Icon

If the Current Status is: “Waiting for the board to acquire time,” then the time on the host computer

has not synchronized to the TFP time yet. If the status is: “Set Clock OK” or “Captured Board Time,”

then the synchronizing process is taking effect. Change the Update Interval to the desired value and

press OK.

To allow the program to continue running in the background, and synchronize the System Time, mini-

mize the window or click OK.

Pressing “Quit” will terminate the program.

Drag the program into your startup group to have it run automatically at boot time.

Caution: Using both TrayTime and either the bc635PCIcfg, or the bc637PCIcfg applications with the

Local TimeOffset value set to anything other than 00 (UTC) will corrupt TrayTime's time value.

2.3.1. Installation

TrayTime is now installed as integrated with the bc635 and bc637 Demo software and so it is

installed along with those programs.

2.3.2. Functionality

Once the TrayTime installation is complete, a small, world icon will appear in the lower right portion of

the desktop (where the clock appears), referred to as the “tray”. Click on the world icon to activate the

main program window. The “Reference Status” control in the GUI indicates if the selected hardware

source is “Locked” or “Unlocked” to the selected input source. If “Reference Status” shows

“Unlocked”, the card is not tracking its reference source (GPS, Timecode, 1PPS etc). It is important

to note that the TrayTime utility will not update the system's time until the selected hardware locks to

its reference source. Once the hardware locks, TrayTimewill update the system time at a periodic

rate, selectable by the user.

- 97 -

2. Windows Application Programs

Note: TrayTime assumes that the time read from the hardware is Universal TimeCoordinate (UTC)

based, and will adjust the hardware time with themachine's local time-zone offset.

2.3.3. TrayTime Dialog Windows

Main Window

Figure 2-28: TrayTimemain window

OK: Minimizes the utility into theWindows System Tray.

Quit: Exits the utility.

About: Shows utility version number.

Setup: Launches the SetupWindows,with Status and Configuration tabs. See below.

Sync Now: Commands the utility to capture time from the board and set the system's time.

Reference Status: Shows “Locked” or “Unlocked” depending on whether the reference hardware is

“tracking” or “not tracking” an external time reference, respectively.

Reference Time: Shows the reference time, UTC-Based time zone.

Offset (milliseconds): Shows the time offset between the reference hardware and the system clock in

milliseconds.

- 98 -

2.3. TraytimeWindows Application Program

TrayTime Setup - Status Window

Figure 2-29: Status Window

Hardware Source: Shows the selected Hardware type used for time synchronization.

HardwareMode: Shows the selected Hardwaremode.

Current Status: Shows the current update status. If status is: “Waiting for the board to acquire time”

thenmachine's time is not synchronized to the reference hardware since the reference hardware is

not tracking an external time source. If status is: “Set Clock Okay”, then themachine's time was

updated to reference hardware time.

Last Update: Time of the last update, UTC based.

- 99 -

2. Windows Application Programs

TrayTime Setup - Configuration Window

Figure 2-30: ConfigurationWindow

Hardware Source: The TrayTime utility supports the listed 8- types of hardware sources.

Mode Selection: The TrayTime utility supports setting themode on the selected hardware.

Note: “GPS Mode” is only available onGPS capable devices.

Windows Service: Check this option to run the TrayTime utility as aWindows service. If this option is

checked, the TrayTime utility will automatically run and update the system timewithout a user login

to the system.

Update Interval: This option sets the interval of how often the system clock time should be updated.

The default interval is 1minute.

- 100 -

3.1. Introduction

3. Windows SDK

3.1. Introduction

3.1.1. General

The bc63xPCI-V2 and bc63xPCIe Software Developer's Kit is designed to provide a suite of tools

useful in the development of applications which access features of the bc63xPCI-V2 and bc63xPCIe

Time and Frequency Processor. This kit has been designed to provide an interface between the

bc63xPCI-V2 and bc63xPCIe Time and Frequency Processor and applications developed for 32 and

64 bit Windows XP or newerWindows operating systems. In addition to the interface library, example

programs are provided, complete with source code, in order to provide a better understanding of the

kit features and benefits.

3.1.2. Features

Themain features of the Software Developer's Kit include:

l API interface library with access to all features of the bc635PCI-V2, bc637PCI-V2, bc635PCIe, and

bc637PCIe Time and Frequency Processor.
l Example application programs, with source code, utilizing the API interface library.
l This User's Guide providing the API library definition.

3.1.3. Overview

TheWindows Software Developer's Kit was designed to provide an interface to the bc635PCI-V2,

bc637PCI-V2, bc635PCIe, and bc635PCIe Time and Frequency Processor in the 32 and 64 bit Win-

dows environments fromWindows XP to the newest Windows 7. Specifically, the supportedWin-

dows operating systems include 32 and 64 bit Windows XP, Vista, Server 2003, Server 2008 and 7.

The example application programs were originally developed under Microsoft Visual C++ 6.0 and

ported to support both Visual C++ 6.0 and Visual Studio 2008. The project files for both Visual C++

6.0 and Visual Studio 2008 are provided. The Visual Studio 2008 project files include 64 bit debug and

release target. The example programs provide sample code that exercises the interface library as well

as examples of convertingmany of the ASCII format data objects passed to and from the device into

a binary format suitable for operation and conversion. The example programs were developed using

discrete functions for each operation that allow the developer to clip any useful code and use it in their

own applications. The configurator example program provides interface dialogs to allow the operator

to set any configurable parameters for operating the bc635PCI-V2, bc637PCI-V2, bc635PCIe, and

bc637PCIe Time and Frequency Processor. Application programs developed using the interface

library run on any 32 or 64 bit Windows XP or newerWindows operating system.

- 101 -

3. Windows SDK

Figure 3-1

The interface API library provides an abstraction layer between the application programs and the

device driver. This allows Symmetricom to advance the Time and Frequency Processor hardware fea-

tures while protecting your investment in application development at the same time.

3.2. Release Notes

Driver

This preferred device driver is called ‘SymmBCPCI.sys’, which replaces the oldWinRT device driver

published originally by the Bluewater Systems. TheWinRT driver was used in previous releases. The

‘SymmBCPCI.sys’ driver supports all types of theWindows operating systems, both 32 and 64-bit,

fromWindows XP toWindows 7. If your target platform is Windows 2000 or earlier, youmust use a

WinRT based software release (release 8.0.0 or earlier).

Installation

The InstallShield created setup program uses Microsoft WinDDK tool ‘DPInst.exe’ to install the tar-

get Windows driver package. ‘DPInst.exe’ sometimes takes a long time to install the driver package.

This is because ‘DPInst.exe’ tries to run the ‘Found New Hardware’ wizard silently when installing

the driver for found bc63xPCI-V2 and bc63xPCIe bus card(s). The setup program displays a DOS win-

dow with themessage “Install SymmBCPCI driver package. This may take a few minutes …” Please

do not interrupt the setup program while the DOS window is still shown and wait for the ‘DPInst.exe’

to finish.

Both the bc635PCIcfg and the bc637PCIcfg setup programs include the TrayTime.exe. The instal-

lation of the bc637PCIcfg program also installs the bc635PCIcfg.exe program.

- 102 -

3.2. Release Notes

Driver Packages

Driver packages for all supportedWindows operating systems are available in the ‘Driver’ directory

under the program installation folder. You can use the ‘Add Hardware’ control panel applet later to rein-

stall the driver package. Make sure you instruct the ‘Add Hardware’ wizard to search for .inf file in the

driver package directory that matches your runningWindows operating system.

64-Bit Applications

The installed bc635PCIcfg.exe and bc637PCIcfg.exe programs are 32-bit application programs. The

64-bit version of both programs and the required DLL are installed in the ‘x64 Program Files’ directory

under the program installation folder.

The ‘SymmBCPCI.sys’ device driver supports both 32 and 64-bit application programs.

DLL File

The DLL file exporting the APIs is BC637PCI.dll. This DLL combines the APIs that were exported

from both BC637PCI.dll and BC_INT.dll from the previous releases. The BC637PCI.dll has a 32 and

a 64-bit version. By default, the 32 bit version is installed into theWindows\System32 directory. The

64-bit version is in the ‘x64 Program Files’ directory as mentioned above.

Software Developers Kit

As with previous releases, the SDK installation does not install the device driver. Youmust run either

the bc635PCIcfg.exe or the bc637PCIcfg.exe setup program or use ‘Add Hardware’ control panel

applet to install the device driver.

The source code for the sample programs, including both bc635PCIcfg.exe and bc637PCIcfg.exe, is

in the ‘Example Programs’ directory under the SDK installation folder. The project files are provided in

both Visual C++ 6.0 and Visual Studio 2008 formats. There are two workspace files in the ‘Example

Programs’ directory. The ‘BC635PCI SDK Examples.dsw’ is for Visual C++ 6.0, and the ‘BC635PCI

SDK Examples_VS2008.sln’ is for Visual Studio 2008. Each example program uses two directories.

Themain directory contains the source files and the Visual C++ 6.0 project file. The directory ending

with ‘_VS2008’ has the Visual Studio 2008 project files only. The Visual Studio 2008 project files refer

to source files in themain directory. Each Visual C++ 6.0 project file has Win32 debug and release tar-

gets. Each Visual Studio 2008 project files have bothWin32 and x64 debug and release targets.

The 32-bit import library file BC637PCI.lib is in the ‘Lib\Win32’ directory under the ‘Example Pro-

grams’ folder. Similarly, the same 64-bit version file is in the ‘Lib\x64’ directory under the ‘Example

Programs’ folder.

TrayTime.exe

The TrayTime.exe links with APIs exported by the ‘TrueTimeSDK.dll’ file. The ‘TrueTimeSDK.dll’ sup-

ports Win32 debug and release targets only. Therefore, there is no 64-bit TrayTime.exe. There are

compiler warnings when compiling TrayTime.exe in Visual Studio 2008. These warnings are due to

TrayTime.exe using deprecated CRT functions. Compilation of other projects is free from compiler

warnings since those source files aremodified to use different CRT functions depending on theMicro-

soft compiler version.

- 103 -

3. Windows SDK

API Calling Convention

In previous releases, the API functions use __cdecl calling convention. In this release, the API func-

tions use __stdcall calling convention. The reason for the change is to allow application development

using Visual Basic. Visual Basic programs can only access exported DLL functions using __stdcall

calling convention. Because of the calling convention change, youmust recompile your existing appli-

cations in order to use the new SDK. The current release provides all the API functions that are avail-

able in previous releases with the exact function signature. In other word, only new API functions are

added but existing API functions are never taken away. Hence, the recompilation of your application

should be successful without any code change.

If you cannot recompile or you don’t have the source code to recompile, youmust use aWinRT based

software release (release 8.0.0 or earlier). Please do not install the driver and new SDK.

NoSync Read Time Functions

Themajor andminor time are held in two 32-bit registers. In previous releases, the read time API func-

tions bcReadBinTime() and bcReadDecTime() do not use synchronization primitives to protect the

two separate 32-bit register reads. This caused occasional problems when two quick consecutive

calls of read time functions returned out of sync time values. In this release, the above two functions

and the two newly added functions bcReadBinTimeEx() and bcReadDecTimeEx() use a shared crit-

ical section to protect the two 32-bit register reads. This ensures the two successive calls of read

time functions return correct time values.

However, the addition of critical section introduces a slight per call delay. Sometimes, the added

delay is not desirable for applications that manage the time value synchronization problem them-

selves. For this reason, four additional API functions bcReadBinTimeNoSync(), bcRead-

BinTimeExNoSync(), bcReadDecTimeNoSync() and bcReadDecTimeExNoSync() are added that do

not use any critical section object. The bcReadBinTimeNoSync() and bcReadDecTimeNoSync() are

the same as bcReadBinTime() and bcReadDecTime() respectively from the previous releases. You

now have choices to decide which function to use in your application per your need.

3.3. Installation

Hardware and driver installation

Youmust install the TFP hardware and the appropriate driver software before you proceed to the Soft-

ware Developer's Kit Installation. Please refer to the Section 1 of this manual for the hardware and

driver software installation instruction.

Software developer's kit installation

Installation of the Software Developer's Kit is handled by executing the installer program “bc635_

637PCI_SDK_Setup.exe”. Youmust accept the license agreement and follow the instruction on the

screen to install the Software Developer's Kit.

- 104 -

3.3. Installation

Configuration

Directory structures are created in the specified installation location. These structures contain all

required files to developWindows XP and newerWindows platform based user applications.

Test installation

You can use either Microsoft Visual C++ 6.0 or Microsoft Visual Studio 2008 to test the installation.

UseMicrosoft Visual C++ 6.0 to open the workspace “BC635PCI SDK EXAMPLES.dsw” in the

“Example Programs” directory under the installation location. Select “Rebuild All” in the Visual C++

6.0 IDE to build all the sample programs. You can select the program you want to run from the Visual

C++ 6.0 IDE by making that project as the active project. The bc635cpp project contains all source

code for the bc635PCIcfg.exe program. The bc637pci project contains all the source code for the

bc637PCIcfg.exe program. The TrayTimeCpp project contains all the source code the TrayTime.exe

program.

UseMicrosoft Visual Studio 2008 to open the solution “BC635PCI SDK EXAMPLES_2008.sln” in the

“Example Programs” directory under the installation location. You can select to buildWin32 or x64

sample programs. Make your choice and select “Rebuild All” in the IDE to build all the sample pro-

grams. Please note that 64-bit TrayTime.exe will not link due to the lack of 64-bit ‘TrueTimeSDK.lib’.

If you want to test 64-bit sample programs, you alsomust make sure the 64-bit BC637PCI.DLL is cop-

ied to the respectiveWindows system directory.

If a device open error is returned, the hardware interface was not installed or configured properly. Ver-

ify that the correct driver was installed according to the guidelines in the “bc635PCI-V2, bc637PCI-V2

Users Guide”.

Project creation

Microsoft Visual C++ 6.0

If you want to use BC637PCI.dll in your own project, youmay follow the instructions below:

1. Update your project setting - C++ preprocessors “Additional include directories” to include the direc-

tory where bc637pci.h and bc_int.h can be found. They are in the “Include” directory under the SDK

installation directory.

2. Update your project setting - Link's “Additional library path” to include the directory where

BC637PCI.lib can be found. They are in the “Lib\Win32” directory under the SDK installation direc-

tory. Add BC637PCI.lib to the “Object/library modules” list.

3. If building a new project similar to TrayTimeCpp, youmay need to change the project settings:

a. For both debug version and release version, go to "C/C++" tab, select "Precompiled Head-

ers" category and then check "Not using precompiled headers" button. Next, go to the Link

tab, select "General category" and add "ws2_32.lib" to "Object/Library Module" edit box.
b. For release version, Link tab, select "Customize" category and then check "Force File Out-

put" box.

4. Copy the shared DLL BC637PCI.DLL to the system directory andmake sure install the

“SymmBCPCI.sys” driver.Microsoft Visual Studio 2008.

- 105 -

3. Windows SDK

Microsoft Visual Studio 2008

You can create Visual Studio 2008 project following the similar steps as those outlined using Visual

C++ 6.0. Using Visual Studio 2008 you can create 64-bit applications. The 64-bit import library

BC637PCI.lib is in the “Lib\x64” directory under the SDK installation directory. The 64-bit DLL

BC637PCI.DLL is in the “Bin\x64” directory under the SDK installation directory.

3.4. Library definitions

General

The interface library provides functions for each of the programming packets supported by the

bc635PCI-V2, bc637PCI-V2, bc635PCIe, and bc637PCIe Time and Frequency Processor. In addi-

tion, functions are provided to both read and write individual registers and Dual Port RAM locations on

the card. To understand the usage and effects of each of these functions, please refer to earlier sec-

tions of this Users Guide.

- 106 -

3.4. Library definitions

Windows SDK Command Finder

Windows SDK Functional Command Summary
"bcStartPCI" on page 109 Opens the underlying hardware layer.

"bcStopPCI" on page 109 Closes the underlying hardware layer.

"bcGetReg" on page 110 Returns the contents of the requested register.

"bcSetReg" on page 110 Sets the contents of the requested register.

"bcGetDPReg" on page 110 Returns the contents of the requested register.

"bcSetDPReg" on page 110 Sets the contents of the requested register.

"ReadBinTime" on page 111 Latches and returns time captured from the time registers.

"bcReadDecTime" on page 112 Latches and returns time captured from the time registers.

"bcReadBinTimeEx" on page 111 Latches and returns time captured from the time registers.

"bcReadDecTimeEx" on page 112 Latches and returns time captured from the time registers.

"ReadBinTimeNoSync" on page 112 Latches and returns time captured from the time registers.

"bcReadBinTimeExNoSync" on page

113
Latches and returns time captured from the time registers.

"bcReadEventTime" on page 114 Latches and returns time captured from the time registers.

"bcReadEventTimeEx" on page 114
Latches and returns time captured caused by an external

event..

"bcReadDecTimeNoSync" on page 113

"ReadDecTimeExNoSync" on page 114

"bcSetBinTime" on page 114 Description: Sets themajor time buffer.

"bcSetBinTime" on page 114

"bcSetBCDTime" on page 115 Sets themajor time buffer.

"bcSetYear" on page 115 Sets the current year value.

"bcSetMode" on page 115 Sets the operatingmode of the board.

"bcCommand" on page 115 Sends reset command to the board.

"bcSetDac" on page 116 Sets new dac value.

"bcSetHbt" on page 116
Programs a periodic output (synchronous or asynchronous

to 1pps).

"bcSetPDelay" on page 116
Programs a propagation delay into the timing engine to

account for delays introduced by long cable runs.

"bcSetTcIn" on page 117
Sets time code type and format for operatingmode 0 (time

codemode).

"bcSetClkSrc" on page 117 Sets the 10MHz-clock source for the board.

"bcSetGenCode" on page 117 Sets the time code generator format.

"bcSetLocOff" on page 118 Programs the board to operate at an offset from UTC.

"bcReqOscData" on page 118 Returns oscillator data from the board.

"bcReqTimeData" on page 118 Returns time data from the board.

"bcReqTimeCodeData" on page 119 Returns timecode data from the board.

"bcReqOtherData" on page 119 Returns other data from the board.

"bcReqVerData" on page 119 Returns version data from the board.

"bcReqManufData" on page 119 Returns manufacture data from the board.

"bcSetGain" on page 120 Modifies the internal oscillator frequency control algorithm.

[caption]

- 107 -

3. Windows SDK

Windows SDK Functional Command Summary

"bcSetGenOff" on page 120
Programs the board time code generator to operate at an

offset from UTC.

"bcSetJam" on page 120 Modifies the internal oscillator frequency control algorithm.

"bcSetDis" on page 121 Modifies the internal oscillator frequency control algorithm.

"bcSetLocalFlag" on page 121
Enables or disables the local time offset entered using

bcSetLocOff() function.

"bcSetDayLightFlag" on page 121

This command only applies Decoding IEEE 1344 Time

Code. If the dlight_flag is enabled, the TFP adjusts its time

by one hour.

"bcYearAutoInc" on page 121
This function is deprecated. It is provided for backwards

compatibility.

"bcSetTmFmt" on page 122
Modifies the format of themajor time data returned by the

board.

"bcSetUtcCtl" on page 122 Modifies the time base in GPS mode.

"bcSetLeapEvent" on page 122
This command can be used inmodes other thanGPS

mode for inserting or deletion of one leap second.

"bcAdjustClock" on page 123 This command advances or retards the TFP internal clock.

"bcSpecialBoot" on page 123
The Special Boot is no longer supported in the V2 hard-

ware.

"bcSetPciCard" on page 124
This command sets themanufacture settings of themod-

ule.

"bcForceJam" on page 124
This command forces the TFP to Jam-Sync on the next ris-

ing edge of the 1PPS output.

"bcSyncRtc" on page 124
This command forces the TFP to Synchronize the RTC

time to current time.

"bcDisRtcBatt" on page 125
This command disconnects the RTC IC from the Battery

after power is turned off.

"bcGPSReq" on page 125 Retrieves a data packet from theGPS receiver.

"bcGPSSnd" on page 125 Sends a data packet from theGPS receiver.

"bcGPSMan" on page 125
Manually sends and retrieves data packets from theGPS

receiver.

"bcGPSOperMode" on page 126
This function should only be used when the TFP is in GPS

Mode of Operation.

"bcStartInt" on page 126 Starts the interrupt thread to signal interrupts.

"bcStopInt" on page 126
Stops the interrupt thread and releases any used

resources.

"bcSetInts" on page 127 Enables one interrupt source.

"bcReqInts" on page 127 Query the currently enabled interrupt.

"bcGetLastInts" on page 128 Query the last signaled interrupt(s).

"bcSetMultInts" on page 128 Starts the interrupt thread to signal interrupts.

"bcReqRevisionID" on page 128 Returns the revision ID of the hardware.

"bcReqTimeCodeDataEx" on page 129 Returns timecode data from the board.

"bcSetPeriodicDDSSelect" on page 129 This command selects periodic output or DDS output.

"bcSetPeriodicDDSEnable" on page 129
This command enables or disables periodic or DDS out-

put.

- 108 -

3.4. Library definitions

Windows SDK Functional Command Summary
"bcSetDDSDivider" on page 130 This command sets the DDS divider for DDS output.

"bcSetDDSDividerSource" on page 130
This command sets the DDS divider source for DDS out-

put.

"bcSetDDSSyncMode" on page 131
This command sets the DDS synchronizationmode for

DDS output.

"bcSetDDSMultiplier" on page 131 This command sets the DDS multiplier for DDS output.

"bcSetDDSPeriodValue" on page 132 This command sets the DDS period value for DDS output.

"bcSetDDSTuningWord" on page 132 This command sets the DDS tuning word for DDS output.

"bcSetDDSFrequency" on page 132 This function sets the DDS output frequency.

"bcSetTcInEx" on page 132
Sets time code type, subtype andmodulation type for oper-

atingmode 0 (time codemode).

"bcSetGenCodeEx" on page 134 Sets the time code generator format and its subtype.

"bcReadEvent2TimeEx" on page 136
Latches and returns time captured caused by a external

event2

"bcReadEvent3TimeEx" on page 137
Latches and returns time captured caused by a external

event3

"bcReqOtherDataEx" on page 137
Returns other data, which are extended now, from the

board.

"bcReqEventsData" on page 137 Returns event, event2 and event3 data.

"bcSetEventsData" on page 138 Sets event, event2 and event3 data.

Functions

bcStartPCI
Prototype int bcStartPCI (INT devno);

Packet N/A

Input Parameter Device Number (>= 0)

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: This opens the underlying hardware layer. ‘devno’ is the card number. It is 0 based. Use 0 if only

one card in the system. There is no limit on the number cards you can access in your system.

bcStopPCI
Prototype int bcStopPCI (void);

Packet N/A

Input Parameter None

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Closes the underlying hardware layer.

- 109 -

3. Windows SDK

bcGetReg
Prototype int bcGetReg (UINT offset, ULONG *data);

Packet N/A

Input Parameter
Offset = 0 based offset of requested register..

Data = pointer to unsigned long to return value requested.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Returns the contents of the requested register.

Note: This command operates on the LCA registers (status/config registers).

bcSetReg
Prototype int bcSetReg (UINT offset, ULONG *data)

Packet N/A

Input Parameter
Offset = 0 based offset of requested register.

Data = pointer to unsigned long value to be set.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Sets the contents of the requested register.

Note: This command operates on the LCA registers (status/config registers).

bcGetDPReg
Prototype int bcGetDPReg (UINT offset, UCHAR *data);

Packet N/A

Input Parameter
Offset = 0 based offset of requested register.

Data = pointer to unsigned char to return value requested.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Returns the contents of the requested register.

Note: This command operates on the Dual Port Memory (packet interface).

bcSetDPReg
Prototype int bcSetDPReg (UINT offset, UCHAR *data)

Packet N/A

Input Parameter
Offset = 0 based offset of requested register.

Data = pointer to unsigned char value to be set.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

- 110 -

3.4. Library definitions

bcSetDPReg

Description: Sets the contents of the requested register.

Note: This command operates on the Dual Port Memory (packet interface).

ReadBinTime

Prototype
int bcReadBinTime (ULONG *major, ULONG *min, UCHAR *

stat);

Packet N/A

Input Parameter

major = unsigned long pointer to storemajor time (Unix format).

min = unsigned long pointer to storemicroseconds.

stat = unsigned char to store status bits.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Latches and returns time captured from the time registers.

Note:The function uses the shared critical section object to synchronize the two 32 bit major and

minor register reads.

bcReadBinTimeEx

Prototype
int bcReadBinTimeEx (ULONG *major, ULONG *min, USHORT *nano,

UCHAR *stat);

Packet N/A

Input Parameter

major = unsigned long pointer to storemajor time (Unix format).

min = unsigned long pointer to storemicroseconds.

nano = pointer to unsigned short to store 100 nano seconds count.

stat = unsigned char to store status bits.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Latches and returns time captured from the time registers.

Note: The function uses the shared critical section object to synchronize the two 32 bit major and

minor register reads.

- 111 -

3. Windows SDK

bcReadDecTime

Prototype
int bcReadDecTime (struct tm *ptm, ULONG *min, UCHAR

*stat);

Packet N/A

Input Parameter

ptm = pointer to tm struct to storemajor time (calendar format).

min = pointer to unsigned long to storemicroseconds.

stat = pointer to unsigned char to store status bits.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Latches and returns time captured from the time registers.

Note:

The function use the shared critical section object to synchronize the two 32 bit major andminor reg-

ister reads.

bcReadDecTimeEx

Prototype
int bcReadDecTimeEx (struct tm *ptm, ULONG *min, USHORT *nano,

UCHAR *stat);

Packet N/A

Input Parameter

ptm = pointer to tm struct to storemajor time (calendar format).

min = pointer to unsigned long to storemicroseconds.

nano = pointer to unsigned short to store 100 nano seconds count.

stat = pointer to unsigned char to store status bits.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Latches and returns time captured from the time registers.

Note: The function uses the shared critical section object to synchronize the two 32 bit major and

minor register reads.

ReadBinTimeNoSync

Prototype
int bcReadBinTimeNoSync (ULONG *major, ULONG *min, UCHAR *

stat);

Packet N/A

- 112 -

3.4. Library definitions

ReadBinTimeNoSync

Input Parameter

major = unsigned long pointer to storemajor time (Unix format).

min = unsigned long pointer to storemicroseconds.

stat = unsigned char to store status bits.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Latches and returns time captured from the time registers.

Note: The function does NOT use any critical section object to synchronize the two 32 bit major and

minor register reads.

bcReadBinTimeExNoSync

Prototype
int bcReadBinTimeExNoSync (ULONG *major, ULONG *min, USHORT *nano,

UCHAR *stat);

Packet N/A

Input Parameter

major = unsigned long pointer to storemajor time (Unix format). min = unsigned

long pointer to storemicroseconds.

nano = pointer to unsigned short to store 100 nano seconds count. stat =

unsigned char to store status bits.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Latches and returns time captured from the time registers.

Note: The function does NOT use any critical section object to synchronize the two 32 bit major and

minor register reads.

bcReadDecTimeNoSync

Prototype
int bcReadDecTimeNoSync (struct tm *ptm, ULONG *min, UCHAR

*stat);

Packet N/A

Input Parameter

ptm = pointer to tm struct to storemajor time (calendar format).

min = pointer to unsigned long to storemicroseconds.

stat = pointer to unsigned char to store status bits.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Latches and returns time captured from the time registers.

Note: The function does NOT use any critical section object to synchronize the two 32 bit major and

minor register reads.

- 113 -

3. Windows SDK

ReadDecTimeExNoSync

Prototype
int bcReadDecTimeExNoSync (struct tm *ptm, ULONG *min, USHORT

*nano, UCHAR *stat);

Packet N/A

Input Parameter

ptm = pointer to tm struct to storemajor time (calendar format).

min = pointer to unsigned long to storemicroseconds.

nano = pointer to unsigned short to store 100 nano seconds count. stat =

pointer to unsigned char to store status bits.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Latches and returns time captured from the time registers.

Note: The function does NOT use any critical section object to synchronize the two 32 bit major and

minor register reads.

bcReadEventTime
Prototype int bcReadEventTime (ULONG *maj, ULONG *min);

Packet N/A

Input Parameter
maj = pointer to unsigned long to storemajor time (Unix format).

min = pointer to unsigned long to storemicroseconds.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Latches and returns time captured caused by an external event.

bcReadEventTimeEx

Prototype
int bcReadEventTime (ULONG *maj, ULONG *min, USHORT

*nano);

Packet N/A

Input Parameter

maj = pointer to unsigned long to storemajor time (Unix format).

min = pointer to unsigned long to storemicroseconds.

nano = pointer to unsigned short to store 100 nano seconds

count.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Latches and returns time captured caused by an external event.

bcSetBinTime
Prototype int bcSetBinTime (ULONG newtime);

Packet 0x12

- 114 -

3.4. Library definitions

bcSetBinTime
Input Parameter newtime = unsigned long time value to set (Unix format).

Returns RC_OK OnSuccess RC_ERROR On Failure

Description: Sets themajor time buffer.

bcSetBCDTime
Prototype int bcSetBCDTime (struct tm stm);

Packet 0x12

Input Parameter stm = tm struct containing new time values to set.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Sets themajor time buffer.

bcSetYear
Prototype int bcSetYear (INT year);

Packet 0x13

Input Parameter year = int value of new year (1990-2036).

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Sets the current year value.

bcSetMode
Prototype int bcSetMode (UCHAR mode);

Packet 0x10

Input Parameter

UCHAR mode: Sets the TFP operatingmode.

Note: The following are defined in the "Bc637pci.h" header file; #defineMODE _

IRIG 0x00

#defineMODE _FREE 0x01 #defineMODE_1pps 0x02 #defineMODE _RTC

0x03 #defineMODE _GPS 0x06

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Sets the operatingmode of the board.

bcCommand
Prototype int bcCommand (INT command);

Packet 0x1A

Input Parameter
int command = requested command action

Note: The following are defined in the "Bc637pci.h" header file. #define CMD_

- 115 -

3. Windows SDK

bcCommand
WARMSTART 0x01

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Sends reset command to the board.

bcSetDac
Prototype int bcSetDac (INT dacval);

Packet 0x24

Input Parameter
int dacval = new d/a value tomodify frequency of internal oscillator. Allowed

values 0x0000 - 0xffff.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Sets new dac value.

Note: This command is not required for standard operation of the device. Be sure to understand the

effects of this operation before utilizing this command.

bcSetHbt
Prototype int bcSetHbt (CHAR mode, INT cnt1, INT cnt2);

Packet 0x14

Input Parameter

char mode = requestedmode

int cnt1 = divisor 1

int cnt2 = divisor 2

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Programs a periodic output (synchronous or asynchronous to 1pps).

bcSetPDelay
Prototype int bcSetPDelay (LONG delay);

Packet 0x17

Input Parameter
long int delay = propagation delay (-9999999 to

+9999999 1 00ns steps)

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Programs a propagation delay into the timing engine to account for delays introduced by

long cable runs.

Note: Usage of a propagation delay value with an absolute value larger than 1millisecond (or 10000

steps) requires first that the user disable jamsynchs. Refer to Chapter 1 for more information.

- 116 -

3.4. Library definitions

bcSetTcIn
Prototype int bcSetTcIn (UCHAR format, UCHAR type);

Packet 0x15, 0x16

Input Parameter

Unsigned char format = time code format.

Unsigned char type = modulation type of time code.

Note: The following are defined in the "Bc637pci.h" header file;

format

#define TCODE _IRIG _A 'A'

#define TCODE _IRIG _B 'B'

#define TCODE _IEEE 'I'

type

#define TCODE _MOD _AM 'M'

#define TCODE _MOD _DC 'D'

Returns RC_OK OnSuccess RC_ERROR On Failure

Description: Sets time code type and format for operatingmode 0 (time codemode).

bcSetClkSrc
Prototype int bcSetClkSrc (UCHAR which);

Packet 0x20

Input Parameter

Unsigned char which = which clock source (internal | external). Note: The fol-

lowing are defined in the "Bc637pci.h" header file;

#define CLK_INT 'I'/* Use on-board clock */

#define CLK_EXT 'E'/* Use external clock */

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Sets the 10MHz-clock source for the board.

Note: This command is not required for standard operation of the device. Be sure to understand the

effects of this operation before utilizing this command.

bcSetGenCode
Prototype int bcSetGenCode (UCHAR format);

Packet 0x1B

Input Parameter

Unsigned char format = time code format.

Note: The following are defined in the "Bc637pci.h" header file; #define

TCODE_GEN_B 'B'

- 117 -

3. Windows SDK

bcSetGenCode
#define TCODE _GEN _I 'I'

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Sets the time code generator format.

bcSetLocOff
Prototype int bcSetLocOff (INT Offset, UCHAR half)

Packet 0x1D

Input Parameter

INT Offset = hours from input time source. (-16 - +16). UCHAR half =

half hour increment

0: No Half Hour increment

1: Add Half Hour increment

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Programs the board to operate at an offset from UTC.

bcReqOscData
Prototype int bcReqOscData (OscData *pdata);

Packet 0x19

Input Parameter
pdata = pointer to OscData structure.

The structure is defined in the "Bc637pci.h" header file.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Returns oscillator data from the board.

bcReqTimeData
Prototype int bcReqTimeData (TimeData *pdata);

Packet 0x19

Input Parameter
pdata = pointer to TimeData structure.

The structure is defined in the "Bc637pci.h" header file.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Returns time data from the board.

Note: See the header file for TimeData structure to understand values being returned.

- 118 -

3.4. Library definitions

bcReqTimeCodeData
Prototype int bcReqTimeCodeData (TimeCodeData *pdata);

Packet 0x19

Input Parameter
pdata = pointer to TimeCodeData structure.

The structure is defined in the "Bc637pci.h" header file.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Returns timecode data from the board.

Note: See the header file for TimeCodeData structure to understand values being returned.

bcReqOtherData
Prototype int bcReqOtherData (OtherData *pdata);

Packet 0x19

Input Parameter
pdata = pointer to OtherData structure.

The structure is defined in the "Bc637pci.h" header file.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Returns other data from the board.

Note: See the header file for OtherData structure to understand values being returned.

bcReqVerData
Prototype int bcReqVerData (VerData *pdata);

Packet 0x19

Input Parameter
pdata = pointer to VerData structure.

The structure is defined in the "Bc637pci.h" header file.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Returns version data from the board.

bcReqManufData
Prototype int bcReqManufData (ManufData *pdata);

Packet 0x19

Input Parameter
pdata = pointer to ManufData structure.

The structure is defined in the "Bc637pci.h" header file.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

- 119 -

3. Windows SDK

bcReqManufData

Description: Returns manufacture data from the board.

Note: See the header file for ManufData structure to understand values being returned.

bcSetGain
Prototype int bcSetGain (INT gain);

Packet 0x25

Input Parameter int gain = oscillator control filter gain value.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Modifies the internal oscillator frequency control algorithm.

Note: This command is not required for standard operation of the device. Be sure to understand the

effects of this operation before utilizing this command.

bcSetGenOff
Prototype int bcSetGenOff (INT Offset, UCHAR half)

Packet 0x1C

Input Parameter

INT offset = hours from input time source. (-16 - +16). UCHAR half = half

hour increment

0: No Half Hour increment

1: Add Half Hour increment

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Programs the board time code generator to operate at an offset from UTC.

bcSetJam
Prototype int bcSetJam (INT jam_ctl);

Packet 0x21

Input Parameter

INT jam_ctl = 0 or 1

0 = Jam-Synchs Disabled

1 = Jam-Synchs Enabled

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Modifies the internal oscillator frequency control algorithm.

Note: This command is not required for standard operation of the device. Be sure to understand the

effects of this operation before utilizing this command.

- 120 -

3.4. Library definitions

bcSetDis
Prototype int bcSetDis (INT dis_ctl);

Packet 0x23

Input Parameter

INT dis_ctl = 0 or 1

0 = Oscillator Disciplining Disabled

1 = Oscillator Disciplining Enabled(default)

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Modifies the internal oscillator frequency control algorithm.

Note: This command is not required for standard operation of the device. Be sure to understand the

effects of this operation before utilizing this command.

bcSetLocalFlag
Prototype int bcSetLocalFlag (UCHAR local_flag);

Packet 0x40

Input Parameter

UCHAR local_flag = 0 or 1

Note: The following are defined in the "Bc637pci.h" header file;

#define LOCAL _FLAG _DIS(0)(default)

#define LOCAL _FLAG _ENA (1)

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Enables or disables the local time offset entered using bcSetLocOff() function.

bcSetDayLightFlag
Prototype int bcSetDayLightFlag (UCHAR dlight_flag);

Packet 0x41

Input Parameter

UCHAR dlight_flag = 0 or 1

Note: The following are defined in the "Bc637pci.h" header

file; #define DAY _LIGHT _DIS (0)(default)

#define DAY _LIGHT _ENA (1)

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: This command only applies Decoding IEEE 1344 TimeCode. If the dlight_flag is ena-

bled, the TFP adjusts its time by one hour.

bcYearAutoInc
Prototype int bcYearInc (UCHAR year_inc);

- 121 -

3. Windows SDK

bcYearAutoInc
Packet 0x42

Input Parameter

UCHAR year_inc = 0 or 1

Note: The following are defined in the "Bc637pci.h" header

file; #define YEAR _AUTO _DIS (0)

#define YEAR _AUTO _ENA (1) (default)

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: This function is deprecated. It is provided for backwards compatibility. The V2 hardware

automatically increments year. For the V1 hardware, this commands the TFP to enable or disable the

auto incrementing of the Year at the beginning of each year. The Year variable is stored into the EEP-

ROM for reference.

bcSetTmFmt
Prototype int bcSetTmFmt (INT tm_fmt);

Packet 0x11

Input Parameter
INT tm_fmt = 0 or 1

1 = Binary Time Format (Default) 0 = Decimal Time Format

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Modifies the format of themajor time data returned by the board.

Note: This command is not required for standard operation of the device. Be sure to understand the

effects of this operation before utilizing this command.

bcSetUtcCtl
Prototype int bcSetUtcCtl (INT utc_ctl);

Packet 0x33

Input Parameter
INT utc_ctl = 0 or 1

0 = UTC Format (Default) 1 = GPS Format

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Modifies the time base in GPS mode. This command determines whether the board will

correct the receivedGPS time for leap second offset and events.

Note: This command is not required for standard operation of the device. Be sure to understand the

effects of this operation before utilizing this command.

bcSetLeapEvent
Prototype int bcSetLeapEvent (CHAR flag, ULONG levent);

Packet 0x1E

- 122 -

3.4. Library definitions

bcSetLeapEvent

Input Parameter

CHAR flag = -1, 0, 1

-1 = Deletion of 1 second 0 = Disable

1 = Insertion of 1 second

ULONG levent = Unix time since January, 1st 1970

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: This command can be used inmodes other thanGPS mode for inserting or deletion of

one leap second.

Note: This command is not required when the TFP is in GPS mode since the TFP automatically han-

dles Leap seconds insertion or deletion.

bcAdjustClock
Prototype int bcAdjustClock (LONG clkvalue);

Packet 0x29

Input Parameter LONG clkvalue = 0x80000000 to 0x7FFFFFFF

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: This command advances or retards the TFP internal clock. The TFP can adjust its clock

up to 100milliseconds per each second. Each count is equal to 10microseconds.

Note: This command is not required for standard operation of the device. Be sure to understand the

effects of this operation before utilizing this command.

bcSpecialBoot
Prototype int bcSpecialBoot (INT sp_boot);

Packet 0xFB

Input Parameter

INT sp_boot;

Note: The following are defined in the

"Bc637pci.h" header file; #define NORMAL _

BOOT 0x0000

#define SPECIAL _BOOT 0x0 100

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: The Special Boot is no longer supported in the V2 hardware. This function is provided for

backwards compatibility. For the V1 hardware, in Special Boot Configuration, the TFP ignores addi-

tional resets after power-on.

Note: This command is not required for standard operation of the device. Be sure to understand the

effects of this operation before utilizing this command.

- 123 -

3. Windows SDK

bcSetPciCard

Prototype
int bcSetPciCard (UCHAR setting, ULONG password, INT

data);

Packet 0xFE

Input Parameter

Note: The following are defined in the "Bc637pci.h" header file;

UCHAR setting = module settings

#defineMODEL _ID 0x04/* IRIG or GPS Model */

#define CRYSTAL _ID 0x03/* Standard or Oven crystal */

ULONG password;

Symmetricom will supply the password

INT data;

For Model ID

#define SET_BC635 0x0635

#define SET_BC637 0x0637

For Crystal ID

#define STD _CRYSTAL 0x0002

#defineMTI _CRYSTAL 0x0014

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: This command sets themanufacture settings of themodule. To change any of these set-

tings, a password is required. This command is mainly used for field upgrades.

bcForceJam
Prototype int bcForceJam (void);

Packet 0x22

Input Parameter None

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: This command forces the TFP to Jam-Sync on the next rising edge of the 1PPS output.

The Jam-Sync bit must be enabled before using this command.

bcSyncRtc
Prototype int bcSyncRtc (void);

Packet 0x27

- 124 -

3.4. Library definitions

bcSyncRtc
Input Parameter None

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: This command forces the TFP to Synchronize the RTC time to current time.

bcDisRtcBatt
Prototype int bcDisRtcBatt (void);

Packet 0x28

Input Parameter None

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: This command disconnects the RTC IC from the Battery after power is turned off. Upon

power on, the TFP automatically connects the RTC IC to the battery.

bcGPSReq
Prototype int bcGPSReq (GpsPkt *ptr);

Packet 0x31

Input Parameter

GpsPkt *ptr

This structure commands information detailing the packet to

retrieve and the buffer where the data will be stored.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Retrieves a data packet from theGPS receiver. (See PACKET 0x3 1 definition.)

bcGPSSnd
Prototype int bcGPSSnd (GpsPkt *ptr);

Packet 0x30

Input Parameter

GpsPkt *ptr

This structure commands information detailing the packet to send and

the buffer where the data is stored.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Sends a data packet from theGPS receiver. (See PACKET 0x30 definition.)

bcGPSMan
Prototype int bcGPSMan (GpsPkt *ptrIn, GpsPkt *ptrOut);

- 125 -

3. Windows SDK

bcGPSMan
Packet 0x32

Input Parameter

GpsPkt *ptrIn

This structure commands information detailing the packet to send and the

buffer where the data is stored.

.GpsPkt *ptrOut

This structure commands information detailing the packet to retrieve and

the buffer where the data will be stored.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Manually sends and retrieves data packets from theGPS receiver. (See PACKET 0x32

definition.)

bcGPSOperMode
Prototype int bcGPSReq (UCHAR static);

Packet 0x34

Input Parameter

UCHAR static = 0 or 1

Note: The following are defined in the "Bc637pci.h" header file;

#define GPS _NONE _STATIC (0)

#define GPS _STATIC (1) (default)

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: By default, the TFP directs the GPS receiver to Static Mode of Operation after the TFP

is tracking to GPS. This Command allows the user to disable this feature. See Packet 2C for detail

description on this feature.

This function should only be used when the TFP is in GPS Mode of Operation.

bcStartInt
Prototype HANDLE bcStartInt (INT dev_no);

Packet N/A

Input Parameter INT dev_no = bc635PCI device to open (same used in bcStartPCI).

Returns Handle to the event object On Success RC_ERROR On Failure

Description: Starts the interrupt thread to signal interrupts.

Notes: See IntrSamp.c that shows how to use interrupts.

bcStopInt
Prototype int bcStopInt (void);

Packet N/A

- 126 -

3.4. Library definitions

bcStopInt
Input Parameter None

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Stops the interrupt thread and releases any used resources.

Notes: * See IntrSamp.c that shows how to use interrupts.

bcSetInts
Prototype int bcSetInts (ULONG *mask, INT *latch);

Packet N/A

Input Parameter

ULONG *mask = pointer to mask to load into INTERRUPTMASK register.

Note: The following are defined in the header file;

#define INT _EVENT (1<<0) #define INT _HBEAT (1<<1) #define INT _STROBE

(1<<2) #define INT_1pps (1<<3) #define INT _DPA (1<<4)

INT *latch = 0 or 1

0 = do not latch time in event registers when interrupt detected.

1 = latch time in event registers when interrupt detected.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Enables one interrupt source.

Notes: See IntrSamp.c that shows how to use interrupts.

Note: Refer to the Chapter 1 for more information regarding allowed values for the INTERRUPT

MASK.

bcReqInts
Prototype int bcReqInts (ULONG *mask, INT *latch);

Packet None

Input Parameter

ULONG *mask = pointer to mask to load from INTERRUPTMASK reg-

ister.

INT *latch = value of current latch setting.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Query the currently enabled interrupt.

Notes: See IntrSamp.c that shows how to use interrupts.

Note: Refer to Chapter 1 for more information regarding allowed values for the INTERRUPTMASK.

- 127 -

3. Windows SDK

bcGetLastInts
Prototype int bcGetLastInts (ULONG *lastInts);

Packet None

Input Parameter ULONG * lastInts = pointer to last signal interrupt.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Query the last signaled interrupt(s).

Notes: SeeMultSamp.c for demonstration of this function. Multiple interrupts support is enabled

using bcSetMultInts

Note: Refer to Chaper 1 for more information regarding allowed values for the INTERRUPTMASK.

bcSetMultInts
Prototype HANDLE bcSetMultInts (INT enable);

Packet N/A

Input Parameter

INT enable = flag to enable or disablemultiple interrupt use. The default is

single interrupt use.

0: disablemultiple interrupts (default). Single interrupt only. 1: enablemul-

tiple interrupts

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Starts the interrupt thread to signal interrupts.

Notes: * SeeMultSamp.c for demonstration of this function.

bcReqRevisionID
Prototype int bcReqRevisionID (UCHAR *pID);

Packet N/A

Input Parameter *pID = revision ID of the hardware.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Returns the revision ID of the hardware. The ID for the V2 hardware is in the range of

[0x20, 0x2F].

Note: The revision ID is stored in the 8 bit Revision ID field of the PCI Configure space. You can

retrieve the revision ID from reading the PCI Configure space.

- 128 -

3.4. Library definitions

bcReqTimeCodeDataEx
Prototype int bcReqTimeCodeDataEx (TimeCodeDataEx *pdata);

Packet 0x19

Input Parameter
pdata = pointer to TimeCodeDataEx structure.

The structure is defined in the "Bc637pci.h" header file.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Returns timecode data from the board.

Note: The time code has been extended in the V2 hardware. It now consists of the time code and its

sub type. The original bcReqTimeCode() function is still supported. But it does not return sub type

information. See the header file for TimeCodeDataEx structure to understand values being returned.

bcSetPeriodicDDSSelect
Prototype int bcSetPeriodicDDSSelect (UCHAR sel);

Packet 0x43

Input Parameter

UCHAR sel = 0 or 1

Note: The following are defined in the "Bc637pci.h" header file; #define

SELECT _PERIODIC _OUT (0x0)

#define SELECT _DDS _OUT (0x1)

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: This command selects periodic output or DDS output.

Note: This function only makes the output choice. You have to call bcSetPeriodicDDSEnable() (see

below) to enable the output unless the output has already been enabled.

bcSetPeriodicDDSEnable
Prototype int bcSetPeriodicDDSEnable (UCHAR enable);

Packet 0x44

Input Parameter

INT enable = flag to enable or disable periodic or DDS output 0: disable

periodic or DDS output.

1: enable periodic or DDS output

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: This command enables or disables periodic or DDS output.

Note: This function only enables the output. You have to call bcSetPeriodicDDSSelect() (see above)

to select the output type.

- 129 -

3. Windows SDK

bcSetDDSDivider
Prototype int bcSetDDSDivider (UCHAR div);

Packet 0x45

Input Parameter

UCHAR div = an enum value

Note: The following are defined in the "Bc637pci.h" header file;

#define DDS_DIVIDE_BY_1E00x0

#define DDS_DIVIDE_BY_1E10x1

#define DDS_DIVIDE_BY_1E20x2

#define DDS_DIVIDE_BY_1E30x3

#define DDS_DIVIDE_BY_1E40x4

#define DDS_DIVIDE_BY_1E50x5

#define DDS_DIVIDE_BY_1E60x6

#define DDS_DIVIDE_BY_1E70x7

#define DDS_DIVIDE_BY_PREG 0xF

Returns

RC_OK OnSuccess

RC_ERROR On Failure

Description: This command sets the DDS divider for DDS output. For information on the detailed

DDS description, please refer Chapter 1 for more information.

bcSetDDSDividerSource
Prototype int bcSetDDSDividerSource (UCHAR src);

Packet 0x46

Input Parameter

UCHAR src = 0, 1 or 2.

Note: The following are defined in the "Bc637pci.h" header

file;

#define DDS_DIVIDED_SRC_DDS0x0

#define DDS_DIVIDER_SRC_MULT0x1

#define DDS _DIVIDER _SRC _100MHZ 0x2

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: This command sets the DDS divider source for DDS output. For information on the

detailed DDS description, please refer Chapter 1 for more information.

- 130 -

3.4. Library definitions

bcSetDDSSyncMode
Prototype int bcSetDDSSyncMode (UCHAR mode);

Packet 0x47

Input Parameter

UCHAR src = 0 or 1

Note: The following are defined in the

"Bc637pci.h" header file;

#define DDS _SYNC _MODE _FRAC0x0

#define DDS _SYNC _MODE _CONT0x1

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: This command sets the DDS synchronizationmode for DDS output. For information on

the detailed DDS description, please refer Chapter 1 for more information.

bcSetDDSMultiplier
Prototype int bcSetDDSMultiplier (UCHAR mul);

Packet 0x48

Input Parameter

UCHAR mul = an enum value

Note: The following are defined in the

"Bc637pci.h" header file;

#define DDS_MULTIPLY_BY_10x1

#define DDS_MULTIPLY_BY_20x2

#define DDS_MULTIPLY_BY_30x3

#define DDS_MULTIPLY_BY_40x4

#define DDS_MULTIPLY_BY_60x6

#define DDS_MULTIPLY_BY_80x8

#define DDS_MULTIPLY_BY_100xA

#define DDS_MULTIPLY_BY_160x10

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: This command sets the DDS multiplier for DDS output. For information on the detailed

DDS description, please refer Chapter 1 for more information.

- 131 -

3. Windows SDK

bcSetDDSPeriodValue
Prototype int bcSetDDSPeriodValue (DWORD period);

Packet 0x49

Input Parameter
DWORD period = unsigned long value in the range

of [0, 0xFFFFFF] for the period value.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: This command sets the DDS period value for DDS output. For information on the

detailed DDS description, please refer Chapter 1 for more information.

bcSetDDSTuning Word
Prototype int bcSetDDSTuningWord (DWORD tune);

Packet 0x4A

Input Parameter
DWORD tune = unsigned long value for the tuning

word.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: This command sets the DDS tuning word for DDS output. For information on the

detailed DDS description, please refer Chapter 1 for more information.

bcSetDDSFrequency
Prototype int bcSetDDSFrequency (double freq);

Packet N/A

Input Parameter
DWORD freq = double value to specify DDS frequency.

The DDS frequency can have fractional value.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: This function sets the DDS output frequency. For information on the detailed DDS

description, please refer Chapter 1 for more information.

Note: This function automatically selects the periodic/DDS output to the DDS output and the syn-

chronizationmode to DDS_SYNC_MODE_FRAC.

bcSetTcInEx

Prototype
int bcSetTcInEx (UCHAR format, UCHAR subtype,

UCHAR mod);

Packet 0x15, 0x16

- 132 -

3.4. Library definitions

bcSetTcInEx

Input Parameter

Unsigned char format = time code format.

Unsigned char subtype = time code sub type.

Unsigned char mod = modulation type of time code.

Note: The following are defined in the "Bc637pci.h"

header file; format

#define TCODE _IRIG _A 'A'

#define TCODE _IRIG _B 'B'

#define TCODE _IEEE 'I'

#define TCODE_IRIG_E'E'

#define TCODE_IRIG_e'e'

#define TCODE_IRIG_G'G'

#define TCODE_NASA36'N'

#define TCODE_XR3'X'

#define TCODE_2 137'2'

subtype

#define TCODE _IRIG _SUBTYPE _NONE 0

#define TCODE_IRIG_SUBTYPE_Y'Y'

#define TCODE_IRIG_SUBTYPE_T'T'

mod

#define TCODE _MOD _AM 'M'

#define TCODE _MOD _DC 'D'

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Sets time code type, subtype andmodulation type for operatingmode 0 (time code

mode).

Note: This function extends the function bcSetTcIn() by allowingmore time code type and a subtype

with certain time code type. The bcSetTcIn() is still supported for backwards compatibility. The sup-

ported combinations of time code type and subtype are as follows:

format subtype Note
TCODE_IRIG_A TCODE_IRIG_SUBTYPE_NONE 'A' - IRIG A no year

TCODE_IRIG_A TCODE_IRIG_SUBTYPE_Y 'AY' - IRIG A with year

TCODE_IRIG_B TCODE_IRIG_SUBTYPE_NONE 'B' - IRIG B no year

TCODE_IRIG_B TCODE_IRIG_SUBTYPE_Y 'BY' - IRIG B with year

- 133 -

3. Windows SDK

format subtype Note
TCODE_IRIG_B TCODE_IRIG_SUBTYPE_T 'BT' - IRIG B Legacy TrueTime

TCODE_IEEE TCODE _IRIG _SUBTYPE _NONE 'I' - IRIG B IEEE 1344

TCODE_IRIG_E TCODE_IRIG_SUBTYPE_NONE 'E' - IRIG E 1000Hz no year

TCODE_IRIG_E TCODE_IRIG_SUBTYPE_Y 'EY' - IRIG E 1000Hz with year

TCODE_IRIG_e TCODE_IRIG_SUBTYPE_NONE 'e' - IRIG E 100Hz no year

TCODE_IRIG_e TCODE_IRIG_SUBTYPE_Y 'eY' - IRIG E 100Hz with year

TCODE_IRIG_G TCODE_IRIG_SUBTYPE_NONE 'G' - IRIGG no year

TCODE_IRIG_G TCODE_IRIG_SUBTYPE_Y 'GY' - IRIGGwith year

TCODE_NASA TCODE_IRIG_SUBTYPE_NONE 'N' - NASA 36

TCODE_XR3 TCODE _IRIG _SUBTYPE _NONE 'X' - XR3

TCODE_2 137 TCODE_IRIG_SUBTYPE_NONE '2' - 2137

bcSetGenCodeEx
Prototype int bcSetGenCodeEx (UCHAR format, UCHAR subtype);

Packet 0x1B

Input Parameter

Unsigned char format = time code format.

Note: The following are defined in the "Bc637pci.h" header file;

format

#define TCODE _IRIG _A 'A' #define TCODE _IRIG _B 'B' #define TCODE _

IEEE 'I'

#define TCODE_IRIG_E'E'

#define TCODE_IRIG_e'e'

#define TCODE_IRIG_G'G'

#define TCODE_NASA36 'N'

#define TCODE_XR3'X'

#define TCODE_2 137'2'

subtype

#define TCODE _IRIG _SUBTYPE _NONE 0

#define TCODE_IRIG_SUBTYPE_0'0'

#define TCODE_IRIG_SUBTYPE_1'1'

#define TCODE_IRIG_SUBTYPE_2'2'

#define TCODE_IRIG_SUBTYPE_3'3'

#define TCODE_IRIG_SUBTYPE_4'4'

#define TCODE_IRIG_SUBTYPE_5'5'

#define TCODE_IRIG_SUBTYPE_6'6'

- 134 -

3.4. Library definitions

bcSetGenCodeEx
#define TCODE_IRIG_SUBTYPE_7'7'

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Sets the time code generator format and its subtype.

Note: This function extends the function bcSetGenCode() by allowingmore time code type and a sub-

type with certain time code type. The bcSetGenCode() is still supported for backwards compatibility.

The supported combinations of time code type and subtype are as follows:

format subtype Note
TCODE_IRIG_A TCODE_IRIG_SUBTYPE_0 'A0' - IRIG A BCD,CF,SBS

TCODE_IRIG_A TCODE_IRIG_SUBTYPE_1
'A1'

1. - IRIG A BCD,CF

TCODE_IRIG_A TCODE_IRIG_SUBTYPE_2
'A2'

1. - IRIG A BCD

TCODE_IRIG_A TCODE_IRIG_SUBTYPE_3
'A3'

1. - IRIG A BCD,SBS

TCODE_IRIG_A TCODE_IRIG_SUBTYPE_4
'A4'

1. - IRIG A BCD,YR,CF,SBS

TCODE_IRIG_A TCODE_IRIG_SUBTYPE_5
'A5'

1. - IRIG A BCD,YR,CF

TCODE_IRIG_A TCODE_IRIG_SUBTYPE_6
'A6'

1. - IRIG A BCD,YR

TCODE_IRIG_A TCODE_IRIG_SUBTYPE_7
'A7'

1. - IRIG A BCD,YR,SBS

TCODE_IRIG_B TCODE_IRIG_SUBTYPE_0 'B0' - IRIG B BCD,CF,SBS

TCODE_IRIG_B TCODE_IRIG_SUBTYPE_1
'B1'

1. - IRIG B BCD,CF

TCODE_IRIG_B TCODE_IRIG_SUBTYPE_2
'B2'

1. - IRIG B BCD

TCODE_IRIG_B TCODE_IRIG_SUBTYPE_3
'B3'

1. - IRIG B BCD,SBS

TCODE_IRIG_B TCODE_IRIG_SUBTYPE_4
'B4'

1. - IRIG B BCD,YR,CF,SBS

TCODE_IRIG_B TCODE_IRIG_SUBTYPE_5
'B5'

1. - IRIG B BCD,YR,CF

- 135 -

3. Windows SDK

format subtype Note

TCODE_IRIG_B TCODE_IRIG_SUBTYPE_6
'B6'

1. - IRIG B BCD,YR

TCODE_IRIG_B TCODE_IRIG_SUBTYPE_7
'B7'

1. - IRIG B BCD,YR,SBS

TCODE_IRIG_B TCODE_IRIG_SUBTYPE_T 'BT' - IRIG B BCD,CF,SBS - Legacy

TCODE_IEEE TCODE _IRIG _SUBTYPE _NONE 'I' - IRIG B IEEE 1344

TCODE_IRIG_E TCODE_IRIG_SUBTYPE_1
'E1'

1. - IRIG E 1000Hz BCD,CF

TCODE_IRIG_E TCODE_IRIG_SUBTYPE_2
'E2'

1. - IRIG E 1000Hz BCD

TCODE_IRIG_E TCODE_IRIG_SUBTYPE_5
'E5'

1. - IRIG E 1000Hz BCD,YR,CF

TCODE_IRIG_E TCODE_IRIG_SUBTYPE_6
'E6'

1. - IRIG E 1000Hz BCD,YR

TCODE_IRIG_e TCODE_IRIG_SUBTYPE_1
'e1'

1. - IRIG E 100Hz BCD,CF

TCODE_IRIG_e TCODE_IRIG_SUBTYPE_2
'e2'

1. - IRIG E 100Hz BCD

TCODE_IRIG_e TCODE_IRIG_SUBTYPE_5
'e5'

1. - IRIG E 100Hz BCD,YR,CF

TCODE_IRIG_e TCODE_IRIG_SUBTYPE_6
'e6'

1. - IRIG E 100Hz BCD,YR

TCODE_IRIG_G TCODE_IRIG_SUBTYPE_5 'G5' - IRIGGBCD,YR,CF

TCODE_NASA TCODE_IRIG_SUBTYPE_NONE 'N' - NASA 36

TCODE_XR3 TCODE_IRIG_SUBTYPE_NONE 'X' - XR3

TCODE_2 137 TCODE _IRIG _SUBTYPE _NONE '2' - 2137

bcReadEvent2TimeEx
Prototype int bcReadEvent2Time (ULONG *maj, ULONG *min, USHORT *nano);

Packet N/A

Input Parameter

maj = pointer to unsigned long to storemajor time (Unix format). min =

pointer to unsigned long to storemicroseconds.

nano = pointer to unsigned short to store 100 nano seconds count.

- 136 -

3.4. Library definitions

bcReadEvent2TimeEx

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Latches and returns time captured caused by a external event2

bcReadEvent3TimeEx
Prototype int bcReadEvent3Time (ULONG *maj, ULONG *min, USHORT *nano);

Packet N/A

Input Parameter

maj = pointer to unsigned long to storemajor time (Unix format). min =

pointer to unsigned long to storemicroseconds.

nano = pointer to unsigned short to store 100 nano seconds count.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Latches and returns time captured caused by a external event3

bcReqOtherDataEx
Prototype int bcReqOtherDataEx (OtherDataEx *pdata);

Packet 0x19

Input Parameter
pdata = pointer to OtherDataEx structure.

The structure is defined in the "Bc637pci.h" header file.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Returns other data, which are extended now, from the board.

bcReqEventsData
Prototype int bcReqEventsData (EventsData *pdata);

Packet N/A

Input Parameter
pdata = pointer to EventsData structure.

The structure is defined in the "Bc637pci.h" header file.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Returns event, event2 and event3 data. The information for each event includes ena-

bled, sense and capture lock.

- 137 -

3. Windows SDK

bcSetEventsData
Prototype int bcSetEventsData (EventsData *pdata);

Packet N/A

Input Parameter
pdata = pointer to EventsData structure.

The structure is defined in the "Bc637pci.h" header file.

Returns
RC_OK OnSuccess

RC_ERROR On Failure

Description: Sets event, event2 and event3 data. The information for each event includes enabled,

sense and capture lock.

- 138 -

4.1. Introduction

4. Linux SDK

4.1. Introduction

4.1.1. General

The PCI/PCIe TFP Linux Developer's Kit is designed to provide a suite of tools useful in the devel-

opment of applications which access features of the bc635PCI-V2, bc637PCI-V2, bc635PCIe, and

bc637PCIe Time and Frequency Processor. This kit is designed to provide an interface between the

PCI/PCIe TFPs and applications developed for Linux environments. In addition to the interface

library, an example program is provided, complete with source code, in order to provide a better under-

standing of the kit features and benefits.

4.1.2. Features

Themain features of the Developer's Kit include:

n An interface library with access to all features of the PCI/PCIe TFPs.

n Example programs, with source, utilizing the interface library.

n User's Guide providing the API interface library definition.

4.1.3. Overview

The Developer's Kit is designed to provide an interface to the bc635PCI-V2, bc637PCI-V2,

bc635PCIe, and bc637PCIe Time and Frequency Processor in the Linux OS environment. The exam-

ple program provides sample code to exercise the interface library and examples to convert ASCII for-

mat data objects passed to and from the device into a binary format suitable for operation and

conversion. The example program was developed using discrete functions for each operation, allow-

ing the developer to clip any useful code.

- 139 -

4. Linux SDK

Figure 4-1

The interface API library provides an abstraction layer between the application programs and the

device driver. This allows Symmetricom to advance the Time and Frequency Processor hardware fea-

tures while protecting your investment in application development. Symmetricom will maintain inter-

face API compatibilities between the current product release and future product releases.

4.2. Installation

4.2.1. Hardware installation

PCI/PCIe HW installation is facilitated due to two factors:

l Geographical addressing, eliminating the need for DIP switches and jumpers normally

required to select a “base address” or interrupt level for plug-in modules.
l Auto configuration, allowing the host computer to read the device ID and other configuration

information directly from the Configuration Registers.

Choose a vacant PCI/PCIe slot and insert the bc635PCI-V2, bc637PCI-V2, bc635PCIe, and

bc637PCIe Time and Frequency Processor (TFP) and install the software. Be sure to consult the

user documentation that camewith your particular workstation for any specific PCI/PCIe card instal-

lation instructions.

4.2.2. Software installation

Because the bc635PCI-V2 and 637PCI-V2 driver is a KLM (kernel loadablemodule), the Linux source

code including version.hmust be installed on the system for the driver to install correctly.

- 140 -

4.2. Installation

Buildingmodules for Linux kernel 2.6.x requires that you have a configured and built kernel tree on

your system. This requirement is a change from previous versions of the kernel, where a current set

of header files was sufficient. 2.6 modules are linked against object files found in the kernel source

tree; the result is amore robust module loader, but also the requirements that those object files are

available.

We have done our best to make our examplemodules safe and correct, but the possibility of bugs is

always present. Faults in kernel code can bring about the demise of a user process or, occasionally,

the entire system. They do not normally createmore serious problems, such as disk corruption. None-

theless, it is advisable to do your kernel experimentation on a system that does not contain data that

you cannot afford to lose, and that does not perform essential services. Kernel developers typically

keep a “sacrificial” system around for the purpose of testing new code.

NOTE: To verify the Linux source code is installed on your machine, check the /usr/src directory.

Usually, there is a symbolic link 'linux' that points to the actual directory where Linux source code

was installed. To check if the version.h is installed on themachine, check /usr/src/linux/include/linux

to see if you have this file.

To install the Software driver and the sample program:

1. Create a directory /home/user/bc635pci (user is your login, for example)

/home/user> mkdir bc635pci

2. Make bc635pci your active directory

/home/user> cd bc635pci

3. If you are building on x86_32 platform, extract the file BCPCI-V<aaa>-x86_32-build<bbb>.tgz

(replace the <aaa> and <bbb> with the actual numbers). If you are building on x86_64 platform,

extract the file BCPCI-V<aaa>-x86_64-build<bbb>.tgz (replace the <aaa> and <bbb> with numbers).

/home/user/bc635pci> tar xvzf BCPCI-V<aaa>-x86_32-build<bbb>.tgz

4. Compile the Driver

/home/user/bc635pci> make

5. Become super user

/home/user/bc635pci> su

6. Install the Driver

/home/user/bc635pci#make install

7. Configure the Driver

Change the user and group IDs and give read/write permissions to the device file /dev/windrvr6

depending on how you want to allow users to access the device.

NOTE: The kernel module (windrvr6.o/windrvr6.ko) can be reloaded upon every boot. It will only be

loaded after executing the following command upon boot:

/sbin/insmod windrvr6

It is recommended that you add this call to your rc.local file.

- 141 -

4. Linux SDK

NOTE: By default, /dev/windrvr6 is created with permissions only for the root user. To enable other

user access, change the write permissions of /dev/windrvr6

4.2.3. Linux kernel versions supported

The bc635/637PCI API uses Jungo's WinDriver to control and access the PCI card. The version of

the Linux kernel supported is determined by theWinDriver Linux Device Driver. Symmetricom inte-

grates the latest WinDriver release (WinDriver 10.0.2) that supports Linux kernel up to 2.6.29. Since

there aremany Linux distributions available, it is not possible to test Symmetricom drivers and APIs

in all installations. Symmetricom installed and tested its software (bc63xPCIcfg) on Fedora Core 8

(x86_32) and Fedora Core 7 (x86_64).

4.2.4. Test Installation

The bc635/637PCI API is provided in both a static library (bcsdklib.a) and a shared library

(libbcsdk.so). The 'sample' directory has a prebuilt test program bc63xPCIcfg (linked with bcsdklib.a)

and bc63xPCIcfg-so (linked with libbcsdk.so). To use the bc63xPCIcfg-so program, the libbcsdk.so

has to be put in a directory that is on the library path.

Rebuild the sample test program to verify that the software installation was successful.

1. Make sample your active directory.

/home/user/bc635pci> cd sample

2. Rebuild the sample code.

/home/user/bc635pci/sample> make clean

/home/user/bc635pci/sample> make

3. Run the sample program.

/usr/bin/bc635pci/sample> ./bc63xPCIcfg

NOTE: If a device open error is received, do the following:

1. Restart the computer.

2. Make drvr your active directory.

/home/user/bc635pci> cd drvr

3. Become super user.

/home/user/bc635pci/drvr> su

4. Run this command.

The installer should have created a folder called "LINUX.x.x.x.x" under the bc635pci path.

Substitute the x.x.x.x with the actual folder name, and run the command below:

/home/user/bc635pci/drvr# ./wdreg LINUX.x.x.x.x/windrvr6.o FALSE

- 142 -

4.2. Installation

NOTE: This command needs to be run every time themachine is powered up. Youmay use the

“/sbin/insmodwindrvr6” command upon every boot. 'wdreg' is a shell script supplied by Jungo as part

of theWinDriver toolkit. Read the script to understand what it does.

5. Run the sample program.

Switch to normal user and run the sample program.

/home/user/bc635pci/sample> ./bc63xPCIcfg

4.2.5. Using the bc63xPCIcfg.exe program

The bc63xPCIcfg programmay be used to test the PCI/PCIe TFP hardware. See the bc63xPCIcfg

menu below:

Symmetricom - TT & M

bc635/637PCIe-V2 Configurator Ver-

sion 3.0

1. Read Current Time (Press enter to return to menu)

2. Read Event Time (Press enter to return to menu)

3. Set Current Time

4. Set Current Year

5. Set Strobe Time

6. Program Control Register

7. Program Leap Event Seconds

8. Select Time Format

9. Select Operational Mode

10. Select Decoding TimeCode Format

11. Select TimeCode Output Format

12. Select Clock Source

13. Select Output Frequency

14. Program Heartbeat counters

15. Set Local Tffset 16. Set Generator Time Offsetime O

17. Set Propogation Delay 18. Set Local Time Offset Flag

19. Set Year Auto Increment Flag 20. Sync RTC to External Time Data

21. Set GPS Time Format 22. Set GPS Mode Flag

23. Software Reset 24. Request Time Settings

25. Request Time Code Settings 26. Request Clock Settings

27. Request Control Settings 28. Request Model Information

29. Request Firmware Version 30. Advanced Menu

- 143 -

4. Linux SDK

31. Interrupts Menu 32. GPS Menu - bc637PCI Only

33. PCI Revision ID 34. Read from Dual Port RAM

35. Write to Dual Port RAM 36. Write ACK - Send DP Command

37. DDS Menu - V2 Hardware Only

38. Select TimeCode Input Format - V2 Hardware

39. Select TimeCode Output Format - V2 Hardware

40. Read from Register 41. Write to Register

42. Select events settings

43. Read Event2 Time (Press enter to return to menu)

44. Read Event3 Time (Press enter to return to menu)

0. Exit the Pro-

gram...

Select Option:

The words “Select Option:“ will appear at the bottom of themenu driven program to allow the user to

select the desired functionality.

Following are some examples demonstrating how to use the bc63xPCIcfg.

Select Operational Mode

There are several operational modes for the PCI-V2/PCIe card. The default TimingMode for the

bc635PCI-V2/PCIe is time code DecodingMode, for the bc637PCI-V2/PCIe it is GPS Mode.

Select Option: 9

0. Time Code Mode

1. Free Running Mode

2. 1PPS Mode

3. RTC Mode

4. GPS Mode

9. Cancel - back to main menu

Select: 1

Verify the Mode selection:

- 144 -

4.2. Installation

Request Time Settings

Select Option: 24

Time Settings:

Mode: Free Run

Time Format: Binary

Year: 2008

Local Offset: 0.0

Propagation Delay: 0

Current Leap Seconds: 0

Scheduled Leap Event Time: 1069977600

Scheduled Leap Event Flag: Disable

GPS Time Format: UTC Format

IEEE Daylight Savings Flag: Enable

>>>>>>>>>>>>>>>> Press Enter to continue <<<<<<<<<<<<<<<<<

Select Option: 1

Binary Time: 10/10/2008 17:12:29.5482294 Status: 0

Binary Time: 10/10/2008 17:12:29.5630256 Status: 0

Binary Time: 10/10/2008 17:12:29.6196937 Status: 0

Binary Time: 10/10/2008 17:12:29.6318699 Status: 0

Binary Time: 10/10/2008 17:12:29.6508560 Status: 0

.

.

.

<enter> to stop reading the time.

- 145 -

4. Linux SDK

Note that “Status: 0” indicates the board is in a locked state. For information on the status bits, refer

to the Chapter 1.

Select Timecode Decoding Format

The PCI/PCIe TFP will decode IRIG A, IRIG B, IEEE 1344 or NASA 36. The default setting for the

bc635PCI-V2 is IRIG B, amplitudemodulated.

Select Option: 10

Select Time Code Format:

1. IRIG A

2. IRIG B

3. IEEE 1344

4. NASA 36

Select: 1

Select Time Code Modulation:

1. Modulated

2. DC Level Shift

Select: 1

To verify the input time code selection:

Request Timecode Settings

Select Option: 25

Time Code Settings:

- 146 -

4.2. Installation

Time Code: IRIG A

Code Modulation: AM

Time Code Out: IRIG B

Generator Time Offset: 0.0

>>>>>>>>>>>>>>>> Press Enter to continue <<<<<<<<<<<<<<<<<

Select Timecode Output Format

The PCI-V2/PCIe will output IRIG B or IEEE 1344, amplitudemodulated or DC level shift.

Select Option: 11

Select Time Code Output Format

0. IRIG B

1. IEEE 1344

Select: 1

Request Time Code Settings

Select Option: 25

Time Code Settings:

Time Code: IRIG A

Code Modulation: AM

Time Code Out: IEEE 1344

Generator Time Offset: 0.0

- 147 -

4. Linux SDK

>>>>>>>>>>>>>>>> Press Enter to continue <<<<<<<<<<<<<<<<<

Select the Time Register Format

The card will output time in binary or grouped decimal formats.

Select Option: 8

Select Time Format

0. Decimal

1. Binary

Select: 0

To verify the time format, check the time settings.

Select Option: 24

Time Settings:

Mode: GPS

Time Format: Decimal

Year : 2007

Local Offset: 0.0

Propagation Delay: 0

Current Leap Seconds: 0

Scheduled Leap Event Time: 1069977600

Scheduled Leap Event Flag: Disable

GPS Time Format: UTC Format

IEEE Daylight Savings Flag: Disable

- 148 -

4.2. Installation

>>>>>>>>>>>>>>>> Press Enter to continue <<<<<<<<<<<<<<<<<

Read Current Time

Youmay read the time in Binary or Decimal formats, selecting option 1 and <enter> to display the

board's time. Note that the default time format is the binary format. It is recommended that you set

(or verify) the time format prior to reading the time, using options 8 or 24. When in binary time format,

the time output will indicate binary time.

Select Option: 1

Binary Time: 01/01/2008 00:00:03.4308082 Status: 7

Binary Time: 01/01/2008 00:00:03.4525147 Status: 7

Binary Time: 01/01/2008 00:00:03.5417680 Status: 7

Binary Time: 01/01/2008 00:00:03.5615496 Status: 7

Binary Time: 01/01/2008 00:00:03.5810793 Status: 7

Binary Time: 01/01/2008 00:00:03.6010876 Status: 7

.

.

.

<enter> to stop reading the time.

Note that “Status: 7” indicates the board is in a flywheel state. For information on the status bits, refer

to Chapter 1.

When in decimal time format, the time output will indicate decimal time.

Select Option: 1

Decimal Time: 284 2008 17:11:26.5086369 Status: 7

Decimal Time: 284 2008 17:11:26.5684513 Status: 7

Decimal Time: 284 2008 17:11:26.6105457 Status: 7

Decimal Time: 284 2008 17:11:26.6484520 Status: 7

Decimal Time: 284 2008 17:11:26.6884591 Status: 7

Decimal Time: 284 2008 17:11:26.7297610 Status: 7

.

- 149 -

4. Linux SDK

.

.

<enter> to exit

Set Current Time

Youmay choose to set the board time. This makes sense when the card does not have a time source

and is counting time in a flywheel state, or when the card is in FreeRun or RTC modes. If the card is

decoding a selected input source, the time written to the card will be overwritten. To set the board

time, select option 3.

Select Option: 3

Enter Time:

YYYY MM DD HH MM SS

2008 10 10 10 10 10

To verify the time:

Select Option: 1

Binary Time: 10/10/2008 17:10:11.9932217 Status: 7

Binary Time: 10/10/2008 17:10:12.0358680 Status: 7

Binary Time: 10/10/2008 17:10:12.1087182 Status: 7

Binary Time: 10/10/2008 17:10:12.1288805 Status: 7

Binary Time: 10/10/2008 17:10:12.1456343 Status: 7

Binary Time: 10/10/2008 17:10:12.1671005 Status: 7

.

.

.

<enter> to exit

Set Current Year

Select Option: 4

- 150 -

4.2. Installation

Enter Year (1990 - 2036): 2008

To verify the year:

Select Option: 1

Binary Time: 10/11/2008 17:10:49.9202763 Status: 7

Binary Time: 10/11/2008 17:10:49.9372524 Status: 7

Binary Time: 10/11/2008 17:10:49.9871942 Status: 7

Binary Time: 10/11/2008 17:10:50.0070659 Status: 7

Binary Time: 10/11/2008 17:10:50.0270642 Status: 7

Binary Time: 10/11/2008 17:10:50.0483900 Status: 7

.

.

.

<enter> to exit

Youmay also use “Request Time Settings” to verify the year:

Select Option: 24

Time Settings:

Mode: GPS

Time Format: Binary

Year: 2005

Local Offset: 0.0

Propagation Delay: 0

Current Leap Seconds: 0

Scheduled Leap Event Time: 1069977600

Scheduled Leap Event Flag: Disable

GPS Time Format: UTC Format

IEEE Daylight Savings Flag: Enable

>>>>>>>>>>>>>>>> Press Enter to continue <<<<<<<<<<<<<<<<<

- 151 -

4. Linux SDK

Request Model Information

Select Option: 28

Model Information

Model: BC637PCI

Serial: 272642420 (0x10403174)

Hardware Fab: 0

Assembly: 0

>>>>>>>>>>>>>>>> Press Enter to continue <<<<<<<<<<<<<<<<<

DDS Frequency and New Time Codes

The current hardware supports DDS output andmany new decoding and generating time codes. The

DDS feature allows amuch wider range of output frequency. These features are demonstrated in the

new menu entries added to the bc63xPCIcfg program.

Select Option: 37

DDS Menu

1. Set DDS Frequency

2. Select Periodic or DDS Output

3. Enable/Disable Periodic/DDS Output

4. Set DDS Divider

5. Set DDS Divider Source

6. Set DDS Sync Mode

7. Set DDS Multiplier

8. Set DDS Period Value

9. Set DDS Tuning Word

0. Back to main menu

- 152 -

4.2. Installation

Select:

You can set the DDS frequency.

Select: 1

Enter DDS Frequency (in HZ): 12345.67

Done setting DDS frequency

>>>>>>>>>>>>>>>> Press Enter to continue <<<<<<<<<<<<<<<<<

The DDS menu options 2 to 9 are for low level DDS controls, which gives themaximum flexibility.

For information on the detailed DDS description, refer to Chapter 1.

The new hardware has expanded greatly in terms of decoding and the generation of time codes. To

access the supported new decoding time codes, use option 38 of the bc63xPCIcfg. For example, you

can specify to decode IRIG E 1000 Hz no year as follows.

Select Option: 38

Select Time Code Format:

1. IRIG A000-A003, A130-A133 (no year)

2. IRIG A004-A007, A134-A137 (has year)

3. IRIG B000-B003, B120-B123 (no year)

4. IRIG B004-B007, B124-B127 (has year)

5. IRIG B TrueTime Legacy

6. IRIG B IEEE 1344

7. IRIG E001, E002, E121, E122 (no year)

8. IRIG E005, E006, E125, E126 (has year)

9. IRIG E001, E002, E111, E112 (no year)

10. IRIG E005, E006, E115, E116 (has year)

11. IRIG G001, G002, G141, G142 (no year)

12. IRIG G005, G006, G145, G146 (has year)

13. NASA 36

14. XR3

15. 2137

- 153 -

4. Linux SDK

0. Back to main menu

Select: 7

Select Time Code Modulation:

1. Modulated

2. DC Level Shift

Select: 1

To use the supported new generating time code, use option 39 of the bc63xPCIcfg. For example, you

can specify to generate IRIGG as follows.

Select Option: 39

Select Time Code Output Format

1. IRIG A000, A130 (BCD,CF,SBS) 2. IRIG A001, A131 (BCD,CF)

 3. IRIG A002, A132 (BCD) 4. IRIG A003, A133 (BCD,SBS)

 5. IRIG A004, A134 (BCD,YR,CF,SBS) 6. IRIG A005, A135 (BCD,YR,CF)

 7. IRIG A006, A136 (BCD,YR) 8. IRIG A007, A137 (BCD,YR,SBS)

9. IRIG B000, B120 (BCD,CF,SBS) 10. IRIG B001, B121 (BCD,CF)

11. IRIG B002, B122 (BCD) 12. IRIG B003, B123 (BCD,SBS)

13. IRIG B004, B124 (BCD,YR,CF,SBS) 14. IRIG B005, B125 (BCD,YR,CF)

15. IRIG B006, B126 (BCD,YR) 16. IRIG B007, B127 (BCD,YR,SBS)

17. IRIG B TrueTime (BCD,CF,SBS) 18. IRIG B IEEE 1344

19. IRIG E001, E121 (BCD,CF) 20. IRIG E002, E122 (BCD)

21. IRIG E005, E125 (BCD,YR,CF) 22. IRIG E006, E126 (BCD,YR)

23. IRIG E001, E111 (BCD,CF) 24. IRIG E002, E112 (BCD)

25. IRIG E005, E115 (BCD,YR,CF) 26. IRIG E006, E116 (BCD,YR)

27. IRIG G005, G145 (BCD,YR,CF) 28. NASA 36

29. XR3 30. 2137

0. Back to main menu

Select: 27

- 154 -

4.3. Library Definitions

Note that option 10 and option 11 of the bc63xPCIcfgmainmenu, still works, but offers a small sub-

set of what is available under option 38 and option 39. These options are still available for users who

are familiar with the previous version of the program.

Compatibility with Old bc635PCI or bc637PCI Card

The bc63xPCIcfg.exe program works with the old bc635PCI or bc637PCI card. These cards are

known as U and V1 hardware. When invoking a feature that is available only in V2 hardware, the pro-

gram displays an error message.

Error: Getting data!!!!!!!!!!!!!!!!!!!!!!

Uninstall Instructions

NOTE: Youmust be logged in as root in order to uninstall.

1. Uninstall the driver service.

Do a /sbin/lsmod to check if theWinDriver module is in use by any application or by other modules.

Make sure no programs are usingWinDriver. If any application or module is usingWinDriver, close all

applications and do a /sbin/rmmod to remove any module usingWinDriver.

Run the command "/sbin/rmmod windrvr6"

rm -rf /dev/windrvr6 (Remove the old device node in the /dev directory.)

2. Delete the bc635pci installation directory.

Use the command rm -rf /usr/bin/bc635pci

4.3. Library Definitions

4.3.1. General

The interface library provides functions for each of the programming packets supported by the

bc635PCI-V2, bc637PCI-V2, bc635PCIe, and bc637PCIe Time and Frequency Processor. In addi-

tion, functions are provided to both read and write individual registers and dual port RAM locations on

the card. To understand the usage and effects of each of these functions, please refer to Chapter 1.

- 155 -

4. Linux SDK

For developers who have developed code based on the library using the V1 hardware, you will notice

that a set of new API functions has been added. However, the existing API functions have been kept

intact. This is to ensure that your program is source compatible with the new library. All you need to

do is a recompile of your program to link with the new library.

4.3.2. Functions

bcStartPci
Prototype BC_PCI_HANDLE bcStartPci ();

Packet N/A

Input Parameter None

Returns
BC_PCI_HANDLE hBC_PCI On Success

NULLOn Failure

Description: This function opens the underlying hardware layer. The return handle is used with the

rest of the functions. (See section 4.4 for a programming example.)

bcStopPci
Prototype void bcStopPci (BC_PCI_HANDLE hBC_PCI);

Packet N/A

Input Parameter
BC_PCI_HANDLE hBC_PCI : Handle returned from

'bcStartPci' function

Returns None

Description: This function closes the underlying hardware layer and releases any used resources.

(See section 4.4 for a programming example.)

bcReadReg

Prototype
BOOL bcReadReg (BC_PCI_HANDLE hBC_PCI, DWORD Offset,

PDWORD Data);

Packet N/A

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

Offset = See defined Registers offsets in the "bcuser.h" header file.

Data = pointer to unsigned long to return value requested.

Returns
TRUE OnSuccess

FALSE On Failure

- 156 -

4.3. Library Definitions

bcReadReg

Description: Returns the contents of the requested register.

bcWriteReg

Prototype
BOOL bcWriteReg (BC_PCI_HANDLE hBC_PCI, DWORD Offset,

DWORD Data);

Packet N/A

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

Offset = See defined Registers offsets in the "bcuser.h" header file.

Data = unsigned long value to be set.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Sets the contents of the requested register.

bcReadDPReg

Prototype
BOOL bcReadDPReg (BC_PCI_HANDLE hBC_PCI, DWORD Offset,

PBYTE Data);

Packet N/A

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

Offset = Byte offset in the Dual Port RAM area. This area is used to send a

command to the timing engine and read a result from the timing engine. For

information on command format and results returned, refer to the PCI/PCIe

TFP Users Guide.

Data = pointer to the return byte value requested.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Returns the content of the requested byte in the Dual Port RAM area.

bcWriteDPReg

Prototype
BOOL bcWriteDPReg (BC_PCI_HANDLE hBC_PCI, DWORD Offset,

BYTE Data);

Packet N/A

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

Offset = Byte offset in the Dual Port RAM area. This area is used to send a

command to the timing engine and read a result from the timing engine. For

information on command format and results returned, refer to the

PCI/PCIe TFP Users Guide.

- 157 -

4. Linux SDK

bcWriteDPReg
Data = byte value to be set.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Sets the content of the requested byte in the Dual Port RAM area.

bcReadBinTime

Prototype
BOOL bcReadBinTime (BC_PCI_HANDLE hBC_PCI, PDWORD

major, PDWORD min, PBYTE stat);

Packet N/A

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' func-

tion

major = unsigned long pointer to storemajor time (Unix format).

min = unsigned long pointer to storemicroseconds.

stat = unsigned char to store status bits.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Latches and returns time captured from the time registers. (See section 4.4 for a pro-

gramming example.)

bcReadBinTimeEx

Prototype
BOOL bcReadBinTimeEx (BC_PCI_HANDLE hBC_PCI, PDWORD

major, PDWORD min, PWORD nano, PBYTE stat);

Packet N/A

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' func-

tion

major = unsigned long pointer to storemajor time (Unix format).

min = unsigned long pointer to storemicroseconds.

nano = unsigned short pointer to store 100 nano seconds count.

stat = unsigned char to store status bits.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Latches and returns time captured from the time registers. (See section 4.4 for a pro-

gramming example.)

bcReadDecTime

Prototype
BOOL bcReadDecTime (BC_PCI_HANDLE hBC_PCI, struct tm *ptm,

PDWORD ulpMin, PBYTE pstat);

- 158 -

4.3. Library Definitions

bcReadDecTime

Packet N/A

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' func-

tion

ptm = pointer to tm stuct to storemajor time (calendar format).

ulpMin = pointer to unsigned long to storemicroseconds.

pstat = pointer to unsigned char to store status bits.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Latches and returns time captured from the time registers. (See section 4.4 for a pro-

gramming example.)

bcReadDecTimeEx

Prototype
BOOL bcReadDecTime (BC_PCI_HANDLE hBC_PCI, struct tm *ptm,

PDWORD ulpMin, PWORD nano, PBYTE pstat);

Packet N/A

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' func-

tion

ptm = pointer to tm stuct to storemajor time (calendar format).

ulpMin = pointer to unsigned long to storemicroseconds.

nano = unsigned short pointer to store 100 nano seconds count.

pstat = pointer to unsigned char to store status bits.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Latches and returns time captured from the time registers. (See section 4.4 for a pro-

gramming example.)

bcSetBinTime
Prototype BOOL bcSetBinTime (BC_PCI_HANDLE hBC_PCI, DWORD newtime);

Packet 0x12

Input Parameter
BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

newtime = unsigned long time value to set (Unix format).

Returns
TRUE OnSuccess

FALSE On Failure

Description: Set themajor time buffer.

- 159 -

4. Linux SDK

bcSetDecTime
Prototype BOOL bcSetDecTime (BC_PCI_HANDLE hBC_PCI, struct tm);

Packet 0x12

Input Parameter
BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

tm = tm struct containing new time values to set.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Set themajor time buffer.

bcReqYear
Prototype BOOL bcReqYear (BC_PCI_HANDLE hBC_PCI, PDWORD year);

Packet 0x19

Input Parameter
BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

year = pointer to unsigned long value of new year (1990-2036).

Returns
TRUE OnSuccess

FALSE On Failure

Description: Request the current year value.

bcSetYear
Prototype BOOL bcSetYear (BC_PCI_HANDLE hBC_PCI, DWORD year);

Packet 0x13

Input Parameter
BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

year = value of new year (1990-2036).

Returns
TRUE OnSuccess

FALSE On Failure

Description: Set the current year value.

bcReadEventTime

Prototype
BOOL bcReadEventTime (BC_PCI_HANDLE hBC_PCI, PDWORD

maj, PDWORD min, PBYTE stat);

Packet N/A

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' func-

tion

maj = pointer to unsigned long to storemajor time (Unix format).

min = pointer to unsigned long to storemicroseconds.

stat = unsigned char to store status bits.

Returns
TRUE OnSuccess

FALSE On Failure

- 160 -

4.3. Library Definitions

bcReadEventTime

Description: Latches and returns time captured caused by an external event.

bcReadEventTimeEx

Prototype
BOOL bcReadEventTimeEx (BC_PCI_HANDLE hBC_PCI, PDWORD maj,

PDWORD min, PWORD nano, PBYTE stat);

Packet N/A

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

maj = pointer to unsigned long to storemajor time (Unix format).

min = pointer to unsigned long to storemicroseconds.

nano = pointer to unsigned short to store 100 nano seconds count.

stat = unsigned char to store status bits.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Latches and returns time captured caused by an external event.

bcSetStrobeTime

Prototype
BOOL bcSetStrobeTime (BC_PCI_HANDLE hBC_PCI, DWORD dMaj,

DWORD dMin);

Packet N/A

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

dMaj = unsigned long value for strobemajor time.

dMin = unsigned long value for strobeminor time.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Set the strobe time.

bcReqTimeFormat
Prototype BOOL bcReqTimeFormat (BC_PCI_HANDLE hBC_PCI, PBYTE timeformat);

Packet 0x19

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

timeformat = pointer to unsigned char value for time format.

The allowed values are defined in the 'bcuser.h' file:

enum { FORMAT_DECIMAL = 0x00 };

enum { FORMAT_BINARY = 0x01 };

Returns TRUE OnSuccess

- 161 -

4. Linux SDK

bcReqTimeFormat
FALSE On Failure

Description: Request current time format.

bcSetTimeFormat
Prototype BOOL bcSetTimeFormat (BC_PCI_HANDLE hBC_PCI, BYTE tmfmt);

Packet 0x11

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

tmfmt = unsigned char value for time format.

The allowed values are defined in the 'bcuser.h' file:

enum { FORMAT_DECIMAL = 0x00 };

enum { FORMAT_BINARY = 0x01 };

Returns
TRUE OnSuccess

FALSE On Failure

Description: Set time format

bcSetMode
Prototype void bcSetMode (BC_PCI_HANDLE hBC_PCI, BYTE mode);

Packet 0x10

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' func-

tion

mode = unsigned char value for new operatingmode.

The allowed values are defined in the 'bcuser.h' file:

enum {MODE_IRIG = 0x00 };

enum {MODE_FREE = 0x01 };

enum {MODE_1PPS = 0x02 };

enum {MODE_RTC = 0x03 };

enum {MODE_GPS = 0x06 };

Returns None

Description: Sets the operatingmode of the board. (See section 4.4 for a programming example.)

bcSetLocOff

Prototype
BOOL bcSetLocOff (BC_PCI_HANDLE hBC_PCI, USHORT offset,

BYTE half);

Packet 0x1D

- 162 -

4.3. Library Definitions

bcSetLocOff

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' func-

tion

Offset = hours from input time source. (-16 - +16).

half = half hour increment

0: No Half Hour increment

1: Add Half Hour increment

Returns
TRUE OnSuccess

FALSE On Failure

Description: Programs the board to operate at an offset from UTC.

bcSetGenOff

Prototype
BOOL bcSetGenOff (BC_PCI_HANDLE hBC_PCI, USHORT offset,

BYTE half);

Packet 0x1C

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' func-

tion

offset = hours from input time source. (-16 - +16).

half = half hour increment

0: No Half Hour increment

1: Add Half Hour increment

Returns
TRUE OnSuccess

FALSE On Failure

Description: Programs the board time code generator to operate at an offset from UTC.

bcSetPropDelay
Prototype BOOL bcSetPropDelay (BC_PCI_HANDLE hBC_PCI, long value);

Packet 0x17

Input Parameter
BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

value = long data for propagation delay.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Sets the propagation delay offset.

- 163 -

4. Linux SDK

bcSetHbt

Prototype
BOOL bcSetHbt (BC_PCI_HANDLE hBC_PCI, BYTE mode, USHORT n1,

USHORT n2);

Packet 0x14

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

mode = unsigned char value for the heartbeat mode.

n1 = unsigned short value for heartbeat counter 1.

n2 = unsigned short value for heartbeat counter 2.

The allowed values are defined in the 'bcuser.h' file:

enum { PERIODIC_SYNC = 0x01 };

enum { PERIODIC_NOSYNC = 0x00 };

Returns
TRUE OnSuccess

FALSE On Failure

Description: Sets the heartbeat counters andmode.

bcSetTcIn
Prototype BOOL bcSetTcIn (BC_PCI_HANDLE hBC_PCI, BYTE TcIn);

Packet 0x15

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

TcIn = unsigned char value for time code input.

The allowed values are defined in the 'bcuser.h' file:

enum { TCODE_IRIG_A = 0x41 };

enum { TCODE_IRIG_B = 0x42 };

enum { TCODE_IEEE = 0x49 };

enum { TCODE_NASA = 0x4E };

Returns
TRUE OnSuccess

FALSE On Failure

Description: Sets the input time code format.

bcSetTcInMod
Prototype BOOL bcSetTcInMod (BC_PCI_HANDLE hBC_PCI, BYTE TcInMod);

Packet 0x16

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

TcInMod = unsigned char value for time code input modulation.

The allowed values are defined in the 'bcuser.h' file:

enum { TCODE_MOD_AM = 0x4D };

- 164 -

4.3. Library Definitions

bcSetTcInMod
enum { TCODE_MOD_DC = 0x44 };

Returns
TRUE OnSuccess

FALSE On Failure

Description: Sets the input time codemodulation.

bcSetGenCode
Prototype BOOL bcSetGenCode (BC_PCI_HANDLE hBC_PCI, BYTE GenTc);

Packet 0x1B

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

GenTc = unsigned char value for the time code output.

The allowed values are defined in the 'bcuser.h' file:

enum { TCODE_IRIG_B = 0x42 };

enum { TCODE_IEEE = 0x49 };

Returns
TRUE OnSuccess

FALSE On Failure

Description: Sets the output time code format.

cSetLeapEvent

Prototype
BOOL bcSetLeapEvent (BC_PCI_HANDLE hBC_PCI, char flag, DWORD

leapevt);

Packet 0x1E

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

flag = char value for the leap event flag.

leapevt = unsigned long value for the leap event time.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Sets the leap event time.

bcSetClkSrc
Prototype BOOL bcSetClkSrc (BC_PCI_HANDLE hBC_PCI, BYTE clk);

Packet 0x20

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' func-

tion

clk = unsigned char value for the clock source.

The allowed values are defined in the 'bcuser.h' file:

enum { CLK_INT = 0x49 };

- 165 -

4. Linux SDK

bcSetClkSrc
enum { CLK_EXT = 0x45 };

Returns
TRUE OnSuccess

FALSE On Failure

Description: Sets the clock source, Internal/External.

bcSetDac
Prototype BOOL bcSetDac (BC_PCI_HANDLE hBC_PCI, USHORT dac);

Packet 0x24

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' func-

tion

dac = unsigned short value for the DAC.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Sets the DAC value

bcSetGain
Prototype BOOL bcSetGain (BC_PCI_HANDLE hBC_PCI, short gain);

Packet 0x25

Input Parameter
BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

gain = short value for the Gain.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Sets the GAIN.

bcSetJam
Prototype BOOL bcSetJam (BC_PCI_HANDLE hBC_PCI, BYTE jam);

Packet 0x21

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

jam = unsigned char value for enabling/disabling jam-sync.

The allowed values are defined in the 'bcuser.h' file:

enum { JAM_SYNC_ENA = 0x01 };

enum { JAM_SYNC_DIS = 0x00 };

Returns
TRUE OnSuccess

FALSE On Failure

Description: Sets the Jam-Sync.

- 166 -

4.3. Library Definitions

bcSetGpsTmFmt
Prototype BOOL bcSetGpsTmFmt (BC_PCI_HANDLE hBC_PCI, BYTE gpsfmt);

Packet 0x33

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

gpsfmt = unsigned char value for gps time format.

The allowed values are defined in the 'bcuser.h' file:

enum {GPS_TIME_FMT = 0x01 };

enum { UTC_TIME_FMT = 0x00 };

Returns
TRUE OnSuccess

FALSE On Failure

Description: Sets the GPS time format.

bcSetGpsOperMode
Prototype BOOL bcSetGpsOperMode (BC_PCI_HANDLE hBC_PCI, BYTE gpsmode);

Packet 0x34

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

gpsmode = unsigned char value for gps mode.

The allowed values are defined in the 'bcuser.h' file:

enum {GPS_STATIC = 0x01 };

enum {GPS_NONE_STATIC = 0x00 };

Returns
TRUE OnSuccess

FALSE On Failure

Description: Sets the GPS operatingmode.

bcSetLocalOffsetFlag
Prototype BOOL bcSetLocalOffsetFlag (BC_PCI_HANDLE hBC_PCI, BYTE flagoff);

Packet 0x40

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

flagoff = unsigned char value for enabling/disabling local offset time.

The allowed values are defined in the 'bcuser.h' file:

enum { LOCAL_OFF_ENABLE = 0x01 };

enum { LOCAL_OFF_DISABLE = 0x00 };

Returns
TRUE OnSuccess

FALSE On Failure

Description: Sets the local offset flag.

- 167 -

4. Linux SDK

bcSetYearAutoIncFlag

Prototype
BOOL bcSetYearAutoIncFlag (BC_PCI_HANDLE hBC_

PCI, BYTE yrinc);

Packet 0x42

BC_PCI_HANDLE hBC_PCI : Handle returned from

'bcStartPci' function

yrinc = unsigned char value for enabling/disabling year auto-

increment flag.

The allowed values are defined in the 'bcuser.h' file:

enum { YEAR_AUTO_ENA = 0x01 };

enum { YEAR_AUTO_DIS = 0x00 };

Returns
TRUE OnSuccess

FALSE On Failure

Description: Sets the year auto increment flag. Note: this function is no longer applicable. The year

is always auto incremented in the V2 hardware. Please refer to the Chapter 1 for details.

bcAdjustClock
Prototype BOOL bcAdjustClock (BC_PCI_HANDLE hBC_PCI, long cval);

Packet 0x29

Input Parameter
BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

cval = long value for adjusting the clock

Returns
TRUE OnSuccess

FALSE On Failure

Description: Advance/Retard clock value.

bcCommand
Prototype void bcCommand (BC_PCI_HANDLE hBC_PCI, BYTE cmd);

Packet 0x1A

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

cmd = unsigned char value for software reset.

The allowed value is defined in the 'bcuser.h' file:

enum { CMD_WARMSTART = 0x01 };

Returns None

Description: Software reset.

bcForceJam
Prototype BOOL bcForceJam (BC_PCI_HANDLE hBC_PCI);

Packet 0x22

- 168 -

4.3. Library Definitions

bcForceJam

Input Parameter BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

Returns
TRUE OnSuccess

FALSE On Failure

Description: Forces a Jam-Sync.

bcSyncRtc
Prototype BOOL bcSyncRtc (BC_PCI_HANDLE hBC_PCI);

Packet 0x27

Input Parameter BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

Returns
TRUE OnSuccess

FALSE On Failure

Description: Sync RTC clock with current time.

bcDisRtcBatt
Prototype BOOL bcDisRtcBatt (BC_PCI_HANDLE hBC_PCI);

Packet 0x28

Input Parameter BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

Returns
TRUE OnSuccess

FALSE On Failure

Description: Disable battery.

bcReqSerialNum
Prototype BOOL bcReqSerialNum (BC_PCI_HANDLE hBC_PCI, PDWORD serial);

Packet 0xFE

Input Parameter
BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

serial = pointer to unsigned long value for serial number of the board.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Request serial number of the board.

bcReqHardwarFab
Prototype BOOL bcReqHardwarFab (BC_PCI_HANDLE hBC_PCI, PWORD fab);

Packet 0xF5

Input Parameter
BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

fab = pointer to unsigned short value for the hardware fab.

Returns TRUE OnSuccess

- 169 -

4. Linux SDK

bcReqHardwarFab
FALSE On Failure

Description: Request hardware fab of the board.

bcReqAssembly
Prototype BOOL bcReqAssembly (BC_PCI_HANDLE hBC_PCI, PWORD num);

Packet 0xF4

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' func-

tion

num = pointer to unsigned short value for the assembly number.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Request assembly number of the board.

bcReqOscData
Prototype BOOL bcReqOscData (BC_PCI_HANDLE hBC_PCI, OscData *pdata);

Packet 0x19

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

pdata = pointer to OscData structure.

The structure is defined in the "bcuser.h" header file.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Request Oscillator data of the board.

bcReqTimeCodeData

Prototype
BOOL bcReqTimeCodeData (BC_PCI_HANDLE hBC_PCI, TimeCodeData

*pdata);

Packet 0x19

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

pdata = pointer to TimeCodeData structure.

The structure is defined in the "bcuser.h" header file.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Request time code data of the board.

bcReqTimeData
Prototype BOOL bcReqTimeData (BC_PCI_HANDLE hBC_PCI, TimeData *pdata);

- 170 -

4.3. Library Definitions

bcReqTimeData
Packet 0x19

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

pdata = pointer to TimeData structure.

The structure is defined in the "bcuser.h" header file.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Request time data of the board.

bcReqOtherData
Prototype BOOL bcReqOtherData (BC_PCI_HANDLE hBC_PCI, OtherData *pdata);

Packet 0x19

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

pdata = pointer to OtherData structure.

The structure is defined in the "bcuser.h" header file.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Request other data of the board.

bcReqOtherDataEx

Prototype
BOOL bcReqOtherDataEx (BC_PCI_HANDLE hBC_PCI, OtherDataEx

*pdata);

Packet 0x19

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

pdata = pointer to OtherDataEx structure.

The structure is defined in the "bcuser.h" header file.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Request other data of the board.

bcReqVerData
Prototype BOOL bcReqVerData (BC_PCI_HANDLE hBC_PCI, VerData *pdata);

Packet 0x19

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function pdata =

pointer to VerData structure.

The structure is defined in the "bcuser.h" header file.

Returns TRUE OnSuccess

- 171 -

4. Linux SDK

bcReqVerData
FALSE On Failure

Description: Request version data of the board.

bcReqModel
Prototype BOOL bcReqModel (BC_PCI_HANDLE hBC_PCI, ModelData *pdata);

Packet 0x19

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

pdata = pointer to ModelData structure.

The structure is defined in the "bcuser.h" header file.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Request model data of the board.

bcGPSReq

Prototype
BOOL bcGPSReq (BC_PCI_HANDLE hBC_PCI, GpsPkt

*pktout);

Packet 0x31

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci'

function

pktout = structure commands information detailing the packet to

retrieve and the buffer

Returns
TRUE OnSuccess

FALSE On Failure

Description: Retrieve a data packet from theGPS receiver. Refer to chapter for more details regard-

ing this command. (See packet 0x31 definition)

bcGPSSnd

Prototype
BOOL bcGPSSnd (BC_PCI_HANDLE hBC_PCI,

GpsPkt *pktin);

Packet 0x30

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from

"bcStartPci"

pktin = structure commands information detailing the

packet to send and the buffer.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Send a data packet to the GPS receiver. Refer to Chapter 1 for more details regarding

this command. (See packet 0x30 definition)

- 172 -

4.3. Library Definitions

bcGPSMan

Prototype
BOOL bcGPSMan (BC_PCI_HANDLE hBC_PCI, GpsPkt *pktin,

GpsPkt *pktout);

Packet 0x32

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci'

function

pktin = structure commands information detailing the packet to

send and the buffer.

pktout = structure commands information detailing the packet to

retrieve and the buffer

Returns
TRUE OnSuccess

FALSE On Failure

Description: Manually send and retrieve data packets from theGPS receiver. Refer to Chapter 1 for

more details regarding this command. (See Packet 0x32 definition)

bcStartInt
bcStartInt

Prototype
BOOL bcStartInt (BC_PCI_HANDLE hBC_PC,

BC_PCI_INT_HANDLER pCallback);

Packet N/A

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned

from 'bcStartPci' function

PCallback function to receive interrupts

Returns
TRUE OnSuccess

FALSE On Failure

Description: Start the interrupt thread. This thread will execute bcShowInt() function every time an

interrupt is detected. (See section 4.4 for a programming example.)

bcStartIntEx

Prototype

BOOL bcStartIntEx (BC_PCI_HANDLE hBC_

PC, BC_PCI_INT_HANDLER pCallback,

DWORD intMask);

Packet N/A

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned

from 'bcStartPci' function

pCallback = function to receive interrupts

intMask = the interrupt mask value

Returns
TRUE OnSuccess

FALSE On Failure

- 173 -

4. Linux SDK

bcStartIntEx

Description: Start the interrupt thread. This thread will execute bcShowInt() function every time an

interrupt is detected. The interrupt mask defines the source of interrupts. (See section 4.4 for a pro-

gramming example.)

bcStopInt
Prototype void bcStopInt (BC_PCI_HANDLE hBC_PCI);

Packet N/A

Input Parameter
BC_PCI_HANDLE hBC_PCI : Handle returned from

'bcStartPci' function

Returns None

Description: Stops the interrupt thread. (See section 4.4 for a programming example.)

bcSetInt
Prototype BOOL bcSetInt (BC_PCI_HANDLE hBC_PCI, BYTE IntVal);

Packet N/A

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from

'bcStartPci' function

IntVal = unsigned char value for selecting the interrupt source.

The allowed values are defined in the 'bcuser.h' file:

enum { INTERRUPT_EVENT = 0x01 };

enum { INTERRUPT_PERIODIC = 0x02 };

enum { INTERRUPT_STROBE = 0x04 };

enum { INTERRUPT_1PPS = 0x08 };

enum { INTERRUPT_GPS = 0x10 };

enum { INTERRUPT_EVENT2 = 0x20 };

enum { INTERRUPT_EVENT3 = 0x40 };

Returns
TRUE OnSuccess

FALSE On Failure

Description: Enable one-interrupt sources. (See section 4.4 for a programming example.)

bcReqInt
Prototype BOOL bcReqInt (BC_PCI_HANDLE hBC_PCI, PBYTE Ints);

Packet N/A

- 174 -

4.3. Library Definitions

bcReqInt

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

Ints = pointer on unsigned char value for current used interrupt.

The allowed values are defined in the 'bcuser.h' file:

enum { INTERRUPT_EVENT = 0x01 };

enum { INTERRUPT_PERIODIC = 0x02 };

enum { INTERRUPT_STROBE = 0x04 };

enum { INTERRUPT_1PPS = 0x08 };

enum { INTERRUPT_GPS = 0x10 };

enum { INTERRUPT_EVENT2 = 0x20 };

enum { INTERRUPT_EVENT3 = 0x40 };

Returns
TRUE OnSuccess

FALSE On Failure

Description: Query the current enabled interrupt.

bcShowInt
Prototype void bcShowInt (BC_PCI_HANDLE hBC_PCI);

Packet N/A

Input Parameter
BC_PCI_HANDLE hBC_PCI : Handle returned

from 'bcStartPci' function

Returns None

Description: This function is used as an interrupt service routine. The user can add any code in this

function to perform tasks once an interrupt is detected.

bcReqRevisionID

Prototype
BOOL bcReqRevisionID (BC_PCI_HANDLE

hBC_PCI, PWORD id);

Packet N/A

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned

from 'bcStartPci' function

id = pointer to unsigned short value for the hard-

ware revision id.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Request hardware revision ID. The hardware revision id is the Revision ID field in the

PCI configuration register space (offset 08h). The current hardware revision ID is in the range of

[0x20, 0x2F]. The original hardware (V1 hardware) revision ID is less than 0x20. You can use the

revision ID to run code specific to each hardware version of the PCI / PCIe card.

- 175 -

4. Linux SDK

bcReqTimeCodeDataEx

Prototype
BOOL bcReqTimeCodeDataEx (BC_PCI_HANDLE hBC_PCI, Time-

CodeDataEx *pdata);

Packet 0x19

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' function

pdata = pointer to TimeCodeDataEx structure.

The structure is defined in the "bcuser.h" header file. The inputFormat and out-

putFormat are the time code type. Both are defined as enums 'TCODE_

<aaa>'. The inputSubType and outputSubType are the IRIG time code sub

type. They are defined as enums 'TCODE_IRIG_SUBTYPE_<a>'.

Returns
TRUE OnSuccess

FALSE On Failure

Description: This function requests time code data of the board. It extends original bcReqTime-

CodeData(). This function returns time code sub type in its extended structure.

bcSetPeriodicDDSSelect

Prototype
BOOL bcSetPeriodicDDSSelect (BC_PCI_HANDLE hBC_

PCI, BYTE bSel);

Packet 0x43

BC_PCI_HANDLE hBC_PCI : Handle returned from

'bcStartPci' function

bSel = unsigned char value to select periodic output or DDS out-

put.

The allowed values are defined in the 'bcuser.h' file:

enum { SELECT_PERIODIC_OUT = 0x0 };

enum { SELECT_DDS_OUT = 0x1 };

Returns
TRUE OnSuccess

FALSE On Failure

Description: This function selects the periodic output or DDS output. Note that this selects the out-

put choice. To enable the output, you have to call bcSetPeriodicDDSEnable.

bcSetPeriodicDDSEnable

Prototype
BOOL bcSetPeriodicDDSEnable (BC_PCI_HANDLE hBC_PCI,

BYTE bEnable);

Packet 0x44

- 176 -

4.3. Library Definitions

bcSetPeriodicDDSEnable
BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci'

function

bEnable = unsigned char value for enabling periodic or enabling

DDS output.

The allowed values are 1 to enable and 0 to disable.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Depending on the selected periodic or DDS output choice (bcSetPeriodicDDSSelect),

this function enables or disables that choice.

bcSetDDSDivider

Prototype
BOOL bcSetDDSDivider (BC_PCI_HANDLE hBC_PCI, BYTE

bDiv);

Packet 0x45

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci'

function

bDiv = unsigned char value to select divider value.

The allowed values are defined in the 'bcuser.h' file:

enum { DDS_DIVIDE _BY_1E0 = 0x0 };

enum { DDS_DIVIDE _BY_1E1 = 0x1 };

enum { DDS_DIVIDE _BY_1E2 = 0x2 };

enum { DDS_DIVIDE _BY_1E3 = 0x3 };

enum { DDS_DIVIDE _BY_1E4 = 0x4 };

enum { DDS_DIVIDE _BY_1E5 = 0x5 };

enum { DDS_DIVIDE _BY_1E6 = 0x6 };

enum { DDS_DIVIDE _BY_1E7 = 0x7 };

enum { DDS_DIVIDE _BY_PREG = 0xF };

- 177 -

4. Linux SDK

bcSetDDSDivider

For information on the detailed DDS description, refer to Chapter 1.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Sets the DDS divider value for the DDS frequency output.

bcSetDDSDividerSource

Prototype
BOOL bcSetDDSDividerSource (BC_PCI_HANDLE hBC_PCI,

BYTE bSrc);

Packet 0x46

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci'

function

bSrc = unsigned char value to select divider source.

The allowed values are defined in the 'bcuser.h' file:

enum { DDS_DIVIDER_SRC_DDS = 0x0 };

enum { DDS_DIVIDER_SRC_MULT = 0x1 };

enum { DDS_DIVIDER_SRC_100MHZ = 0x2 };

For information on the detailed DDS description, refer to Chapter 1..

Returns
TRUE OnSuccess

FALSE On Failure

Description: Sets the DDS divider source for the DDS frequency output.

bcSetDDSSyncMode

Prototype
BOOL bcSetDDSSyncMode (BC_PCI_HANDLE hBC_PCI, BYTE

bMode);

Packet 0x47

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' func-

tion

bMode = unsigned char value to select synchronizationmode.

The allowed values are defined in the 'bcuser.h' file:

enum { DDS_SYNC_MODE_FRAC = 0x0 };

enum { DDS_SYNC_MODE_CONT = 0x1 };

For information on the detailed DDS description, refer to Chapter 1.

Returns
TRUE OnSuccess

FALSE On Failure

Description: This sets the DDS synchronizationmode for the DDS frequency output.

- 178 -

4.3. Library Definitions

bcSetDDSMultiplier

Prototype
BOOL bcSetDDSMultiplier (BC_PCI_HANDLE hBC_PCI,

BYTE bMult);

Packet 0x48

BC_PCI_HANDLE hBC_PCI : Handle returned from

'bcStartPci' function

bMult = unsigned char value to select continuous syn-

chronizationmodemultiplier.

The allowed values are defined in the 'bcuser.h' file:

enum { DDS_MULTIPLY_BY_1 = 0x1 };

enum { DDS_MULTIPLY_BY_2 = 0x2 };

enum { DDS_MULTIPLY_BY_3 = 0x3 };

enum { DDS_MULTIPLY_BY_4 = 0x4 };

enum { DDS_MULTIPLY_BY_6 = 0x6 };

enum { DDS_MULTIPLY_BY_8 = 0x8 };

enum { DDS_MULTIPLY_BY_10 = 0xA };

enum { DDS_MULTIPLY_BY_16 = 0x10 };

For information on the detailed DDS description, refer to Chap-

ter 1.

Returns
TRUE OnSuccess

FALSE On Failure

Description: This sets the continuous synchronizationmodemultiplier for the DDS frequency out-

put.

bcSetDDSPeriodValue

Prototype
BOOL bcSetDDSDividerSyncMode (BC_PCI_HANDLE hBC_PCI,

DWORD period);

Packet 0x49

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci' func-

tion

period = unsigned long value in the range of [0, 0xFFFFFF] for period

value.

For information on the detailed DDS description, refer to Chapter 1.

Returns
TRUE OnSuccess

FALSE On Failure

Description: This sets the DDS period value for the DDS frequency output.

- 179 -

4. Linux SDK

bcSetDDSTuningWord

Prototype
BOOL bcSetDDSTuningWord (BC_PCI_HANDLE hBC_PCI,

DWORD tuneWord);

Packet 0x4A

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci'

function

tuneWord = unsigned long value for the turning word.

For information on the detailed DDS description, refer to Chapter 1.

Returns
TRUE OnSuccess

FALSE On Failure

Description: This sets the DDS tuning word for the DDS frequency output.

bcSetDDSFrequency

Prototype
BOOL bcSetDDSFrequency (BC_PCI_HANDLE hBC_PCI,

DOUBLD freq);

Packet N/A

BC_PCI_HANDLE hBC_PCI : Handle returned from

'bcStartPci' function

freq = double value to specify the DDS frequency. The DDS

frequency can have fractional values.

For information on the detailed DDS description, refer to Chap-

ter 1.

Returns
TRUE OnSuccess

FALSE On Failure

Description: This sets the frequency for the DDS frequency output. Note that this function auto-

matically selects DDS output (bcSetPeriodicDDSSelect) and sets the synchronizationmode to

DDS_ SYNC_MODE_FRAC (bcSetDDSDividerSyncMode).

bcSetTcInEx

Prototype
BOOL bcSetTcInEx (BC_PCI_HANDLE hBC_PCI, BYTE

TcIn, BYTE SubType);

Packet 0x15

- 180 -

4.3. Library Definitions

bcSetTcInEx
BC_PCI_HANDLE hBC_PCI : Handle returned from

'bcStartPci' function

TcIn = unsigned char value for time code input.

SubType = unsigned char value for time code subtype.

The allowed values are defined in the 'bcuser.h' file:

TCODE_IRIG_A, TCODE_IRIG_SUBTYPE_NONE ('A' -

IRIG A no year)

TCODE_IRIG_A, TCODE_IRIG_SUBTYPE_Y ('AY' - IRIG

A with year)

TCODE_IRIG_B, TCODE_IRIG_SUBTYPE_NONE ('B' -

IRIG B no year)

TCODE_IRIG_B, TCODE_IRIG_SUBTYPE_Y ('BY' - IRIG

B with year)

TCODE_IRIG_B, TCODE_IRIG_SUBTYPE_T ('BT' - IRIG

B Legacy TrueTime)

TCODE_IEEE, TCODE_IRIG_SUBTYPE_NONE ('I' - IRIG

B IEEE 1344)

TCODE_IRIG_E, TCODE_IRIG_SUBTYPE_NONE ('E' -

IRIG E 1000Hz no year)

TCODE_IRIG_E, TCODE_IRIG_SUBTYPE_Y ('EY' - IRIG

E 1000Hz with year)

TCODE_IRIG_e, TCODE_IRIG_SUBTYPE_NONE ('e' -

IRIG E 100Hz no year)

TCODE_IRIG_e, TCODE_IRIG_SUBTYPE_Y ('eY' - IRIG E

100Hz with year)

TCODE_IRIG_G, TCODE_IRIG_SUBTYPE_NONE ('G' -

IRIGG no year)

TCODE_IRIG_G, TCODE_IRIG_SUBTYPE_Y ('GY' - IRIG

Gwith year)

TCODE_NASA, TCODE_IRIG_SUBTYPE_NONE ('N' -

NASA 36)

TCODE_XR3, TCODE_IRIG_SUBTYPE_NONE ('X' - XR3)

TCODE_2137, TCODE_IRIG_SUBTYPE_NONE ('2' - 2137)

Returns
TRUE OnSuccess

FALSE On Failure

Description: This sets the input time code format and subtype. It extends the function bcSetTcIn to

support new time code formats and subtypes.

- 181 -

4. Linux SDK

bcSetGenCodeEx

Prototype
BOOL bcSetGenCodeEx (BC_PCI_HANDLE hBC_PCI,

BYTE GenTc, BYTE SubType);

Packet 0x1B

- 182 -

4.3. Library Definitions

bcSetGenCodeEx

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from

'bcStartPci' function

GenTc = unsigned char value for the time code output.

SubType = unsigned char value for time code subtype.

The allowed values are defined in the 'bcuser.h' file:

TCODE_IRIG_A, TCODE_IRIG_SUBTYPE_0 ('A0' - IRIG A

BCD,CF,SBS)

TCODE_IRIG_A, TCODE_IRIG_SUBTYPE_1 ('A1' - IRIG A

BCD,CF)

TCODE_IRIG_A, TCODE_IRIG_SUBTYPE_2 ('A2' - IRIG A

BCD)

TCODE_IRIG_A, TCODE_IRIG_SUBTYPE_3 ('A3' - IRIG A

BCD,SBS)

TCODE_IRIG_A, TCODE_IRIG_SUBTYPE_4 ('A4' - IRIG A

BCD,YEAR,CF,SBS)

TCODE_IRIG_A, TCODE_IRIG_SUBTYPE_5 ('A5' - IRIG A

BCD,YEAR,CF)

TCODE_IRIG_A, TCODE_IRIG_SUBTYPE_6 ('A6' - IRIG A

BCD,YEAR)

TCODE_IRIG_A, TCODE_IRIG_SUBTYPE_7 ('A7' - IRIG A

BCD,YEAR,SBS)

TCODE_IRIG_B, TCODE_IRIG_SUBTYPE_0 ('B0' - IRIG B

BCD,CF,SBS)

TCODE_IRIG_B, TCODE_IRIG_SUBTYPE_1 ('B1' - IRIG B

BCD,CF)

TCODE_IRIG_B, TCODE_IRIG_SUBTYPE_2 ('B2' - IRIG B

BCD)

TCODE_IRIG_B, TCODE_IRIG_SUBTYPE_3 ('B3' - IRIG B

BCD,SBS)

TCODE_IRIG_B, TCODE_IRIG_SUBTYPE_4 ('B4' - IRIG B

BCD,YEAR,CF,SBS)

TCODE_IRIG_B, TCODE_IRIG_SUBTYPE_5 ('B5' - IRIG B

BCD,YEAR,CF)

TCODE_IRIG_B, TCODE_IRIG_SUBTYPE_6 ('B6' - IRIG B

BCD,YEAR)

TCODE_IRIG_B, TCODE_IRIG_SUBTYPE_7 ('B7' - IRIG B

BCD,YEAR,SBS)

- 183 -

4. Linux SDK

bcSetGenCodeEx
TCODE_IRIG_B, TCODE_IRIG_SUBTYPE_T ('BT' - IRIG

B BCD,CF,SBS - Legacy TrueTime)

TCODE_IEEE, TCODE_IRIG_SUBTYPE_NONE ('I' - IRIG

B IEEE 1344)

TCODE_IRIG_E, TCODE_IRIG_SUBTYPE_1 ('E1' - IRIG E

1000Hz BCD,CF)

TCODE_IRIG_E, TCODE_IRIG_SUBTYPE_2 ('E2' - IRIG E

1000Hz BCD)

TCODE_IRIG_E, TCODE_IRIG_SUBTYPE_5 ('E5' - IRIG E

1000Hz BCD,YEAR,CF)

TCODE_IRIG_E, TCODE_IRIG_SUBTYPE_6 ('E6' - IRIG E

1000Hz BCD,YEAR)

TCODE_IRIG_e, TCODE_IRIG_SUBTYPE_1 ('e1' - IRIG E

100Hz BCD,CF)

TCODE_IRIG_e, TCODE_IRIG_SUBTYPE_2 ('e2' - IRIG E

100Hz BCD)

TCODE_IRIG_e, TCODE_IRIG_SUBTYPE_5 ('e5' - IRIG E

100Hz BCD,YEAR,CF)

TCODE_IRIG_e, TCODE_IRIG_SUBTYPE_6 ('e6' - IRIG E

100Hz BCD,YEAR)

TCODE_IRIG_G, TCODE_IRIG_SUBTYPE_5 ('G5' - IRIG

GBCD,YEAR,CF)

TCODE_NASA, TCODE_IRIG_SUBTYPE_NONE ('N' -

NASA 36)

TCODE_XR3, TCODE_IRIG_SUBTYPE_NONE ('X' - XR3)

TCODE_2137, TCODE_IRIG_SUBTYPE_NONE ('2' - 2137)

Returns
TRUE OnSuccess

FALSE On Failure

Description: This sets the output time code format and subtype. It extends the function bcSet-

GenCode to support new time code formats and subtypes.

- 184 -

4.3. Library Definitions

bcSetGenCodeEx

bcReadEvet2TimeEx

Prototype
BOOL bcReadEvent2TimeEx (BC_PCI_HANDLE hBC_PCI,

PDWORD major, PDWORD min, PWORD nano, PBYTE stat);

Packet N/A

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci'

function

major = unsigned long pointer to storemajor time (Unix format).

min = unsigned long pointer to storemicroseconds.

nano = unsigned short pointer to store 100 nano seconds count.

stat = unsigned char to store status bits.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Latches and returns time captured from the event2. (See section 4.4 for a programming

example.)

bcReadEvent3TimeEx

Prototype
BOOL bcReadEvent3TimeEx (BC_PCI_HANDLE hBC_PCI,

PDWORD major, PDWORD min, PWORD nano, PBYTE stat);

Packet N/A

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from 'bcStartPci'

function

major = unsigned long pointer to storemajor time (Unix format).

min = unsigned long pointer to storemicroseconds.

nano = unsigned short pointer to store 100 nano seconds count.

stat = unsigned char to store status bits.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Latches and returns time captured from the event3. (See section 4.4 for a programming

example.)

bcReqEventsData

Prototype
BOOL bcReqEventsData (BC_PCI_HANDLE hBC_

PCI, EventsData *pdata);

Packet 0x19

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from

'bcStartPci' function

pdata = pointer to EventsData structure.

- 185 -

4. Linux SDK

bcReqEventsData
The structure is defined in the "bcuser.h" header file.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Returns event, event2 and event3 data. The information for each event includes ena-

bled, sense and capture lock.

bcSetEventsData

Prototype
BOOL bcSetEventsData (BC_PCI_HANDLE hBC_

PCI, EventsData *pdata);

Packet 0x19

Input Parameter

BC_PCI_HANDLE hBC_PCI : Handle returned from

'bcStartPci' function

pdata = pointer to EventsData structure.

The structure is defined in the "bcuser.h" header file.

Returns
TRUE OnSuccess

FALSE On Failure

Description: Sets event, event2 and event3 data. The information for each event includes enabled,

sense and capture lock.

4.4. Programming Examples

4.4.1. General

The example code fragments in this chapter are written in the C programming language. These exam-

ples are extracted from the bc63xPCIcfg application included in this kit.

4.4.2. Starting and Stopping the Device

The following example starts and stops the device:

BC_PCI_HANDLE hBC_PCI;

// Start the device

hBC_PCI = bcStartPci();

if (!hBC_PCI)

{

- 186 -

4.4. Programming Examples

printf ("Error Opening Device Driver\n");

return -1;

}

…

…

…

// Stop the device

bcStopPci(hBC_PCI);

4.4.3. Reading Time On Demand

The following example reads the time from the TFP register:

DWORD maj, min;

WORD nano;

BYTE stat;

struct tm *majtime;

Reading in Binary Time Format

if (bcReadBinTimeEx (hBC_PCI, &maj, &min, &nano, &stat) == TRUE)

{

majtime = gmtime(&maj);

printf("\nBinary Time: %02d/%02d/%d %02d:%02d:%02d.%06lu%d

Status: %d",

majtime->tm_mon+1, majtime->tm_mday, majtime->tm_year+1900,

majtime->tm_hour, majtime->tm_min, majtime->tm_sec, min, nano,

stat);

}

- 187 -

4. Linux SDK

Reading in Decimal Time Format

if (bcReadDecTimeEx (hBC_PCI, majtime, &min, &nano, &stat) == TRUE)

{

printf("\nDecimal Time: %d %d %02d:%02d:%02d.%06lu%d Status: %d",

majtime->tm_yday, majtime->tm_year+1900,

majtime->tm_hour, majtime->tm_min, majtime->tm_sec, min, nano, stat);

}

3.4.4. Setting theTFP Mode

The following example sets the TFP mode to GPS:

bcSetMode (hBC_PCI, MODE_GPS);

4.4.5. Setting Interrupts

The following example sets a 1PPS Interrupt:

// Define an Interrupt handler function

void bcIntHandlerRoutine(BC_PCI_HANDLE hBC_PCI, DWORD dwSource)

{

printf(“Got Interrupt Number: %d\n”, dwSource);

}

// Start the interrupt routine

bcStartIntEx(hBC_PCI, bcIntHandlerRoutine, INTERRUPT_1PPS);

// Set the interrupt type

bcSetInt(hBC_PCI, INTERRUPT_1PPS);

- 188 -

4.4. Programming Examples

// To stop interrupt generation

bcStopInt(hBC_PCI);

- 189 -

5.1. Introduction

5. Solaris SDK

5.1. Introduction

5.1.1. General

The Solaris bc63xPCI-V2 / PCIe Driver Kit provides a device driver and a sample program useful in

the development of applications which access features of the bc635PCI-V2, bc637PCI-V2,

bc635PCIe, and bc637PCIe Time and Frequency Processor. This kit is designed to provide an inter-

face between the PCI/PCIe TFP and applications developed for Solaris 8, 9, and 10 on SPARC and

x86_64 Platforms. The driver and sample program source code are provided to give a better under-

standing of the kit features and benefits.

5.1.2. Features

Themain features of the Driver Kit include:

n The device driver and example program with source

n This section of the User's Guide providing library definitions

5.1.3. Overview

The Driver Development Kit provides an interface to the bc635PCI-V2, bc637PCI-V2, bc635PCIe,

and bc637PCIe Time and Frequency Processor in the 64 bit environments of Solaris 8, 9, and 10.

The example program provides sample code shows examples of convertingmany of the ASCII for-

mat data objects, passed to and from the device into a binary format suitable for operation and con-

version. The example program was developed using discrete functions for each operation, which

allows the developer to copy any useful code and use it in their own applications.

This release supports both the SPARC and x64_64 platforms. You need to use the platform specific

tar file for installation.

5.2. Installation

5.2.1. Hardware Installation

Installation of boards is quite a bit simpler than inmost bus architectures due to two factors:

- 191 -

5. Solaris SDK

Geographical addressing, which eliminates the need for DIP switches and jumpers normally required

to select a 'base address' or interrupt level for plug-in modules; and auto configuration, which allows

the host computer to read the device ID and other configuration information directly from the card

itself so that the host can select the appropriate device driver automatically. The only thing the user

has to do is pick a vacant PCI / PCIe slot, plug the bc635PCI-V2, bc637PCI-V2, bc635PCIe, and

bc637PCIe into it, and then install the device driver. Be sure to consult the user documentation that

camewith your particular workstation for any specific card installation instructions. When installing

the PCI / PCIe card, use good ESD precautions.

5.2.2. Software Installation

The software is created as a Solaris package. To install the software package follow these steps.

1. Untar the platform specific package tar file.

/export/home/user> su

tar xf BCPCI-V<aaa>-sparc64-build<bbb>.tar

Note 'user' is the name of your user. <aaa> is the release version, and <bbb> is the three digit build

number. For x86_64 platform, the file is BCPCI-V<aaa>-x86_64-build<bbb>.tar.

2. Use the 'pkgadd' command to install the package. Answer 'y' to the question when prompted.

pkgadd -d . BC635PCI

Processing package instance <BC635PCI> from </export/home/user/bc635pci>

BC635/637PCIe-V2 Solaris driver(sparc) 1.0,REV=8.0V0

Symmetricom, Inc.

Using </> as the package base directory.

Processing package information.

Processing system information.

1 package pathname is already properly installed.

Verifying disk space requirements.

Checking for conflicts with packages already installed.

- 192 -

5.2. Installation

Checking for setuid/setgid programs.

This package contains scripts which will be executed with super-user

permission during the process of installing this package.

Do you want to continue with the installation of <BC635PCI> [y,n,?] y

Installing BC635/637PCI-V2/PCIe Solaris driver as <BC635PCI>

Installing part 1 of 1.

/kernel/drv/sparcv9/stfp

/opt/BC635PCI/include/stfpio.h

/opt/BC635PCI/src/Makefile

/opt/BC635PCI/src/bc635pci.c

/opt/BC635PCI/src/bc63xPCIcfg

/opt/BC635PCI/src/stfp.c

[verifying class <none>]

Executing postinstall script.

Driver installed. Please reboot now.

Installation of <BC635PCI> was successful.

3. Reboot your computer.

This driver should work correctly in its current binary form without the need for recompilation. Alter-

natively, you can also use the provided 'install.sh' script to install the software. This script is in the

directory where you find the package tar file. Youmust run 'install.sh' as root. The script combines

the 'untar' and 'pkgadd' together. Again, remember to reboot your machine after finishing the script.

The install script for SPARC platform is shown below:

#!/bin/sh

Install easy script for BC635PCI package.

- 193 -

5. Solaris SDK

Copyright (C) 1997, EIS Computers, Symmetricom Inc.

Copyright (C) 2007-2009, Symmetricom Inc.

#

Run this simple script from the same directory as the

BCPCI-V800-sparc64-build<aaa>.tar file you have received.

Note <aaa> is the three digit build number.

#

TARFILE=`ls BCPCI-V800-sparc64-build*.tar`

if [$? -ne 0]; then

echo "The tar file for the BCPCI software does not exist!"

exit 1

fi

tar xf $TARFILE

PATH=$PATH:/usr/bin:/usr/sbin

export PATH

PKG=BC635PCI

pkgadd -d . $PKG

Note: On the SPARC platform, the driver stfp is installed to /kernel/drv/sparcv9 directory. On the

x86_64 platform, the driver stfp is installed to /kernel/drv/amd64 directory.

After your computer has rebooted, you can inspect the installed package using the Solaris 'pkginfo'

command (output of other install packages are removed for clarity).

/export/home/user> pkginfo | grep BC635PCI

Symmetricom BC635PCI BC635/637PCIe-V2 Solaris driver

- 194 -

5.2. Installation

In case, you want to remove the software package, use the Solaris 'pkgrm' command. Answer 'y' to

the two questions when prompted. The output for removing BC635PCI package on the SPARC plat-

form is shown below.

pkgrm BC635PCI

The following package is currently installed:

BC635PCI BC635/637PCI-V2/PCIe Solaris driver

(sparc) 1.0,REV=8.0V0

Do you want to remove this package? [y,n,?,q] y

Removing installed package instance <BC635PCI>

This package contains scripts which will be executed with super-user

permission during the process of removing this package.

Do you want to continue with the removal of this package [y,n,?,q] y

Verifying package <BC635PCI> dependencies in global zone

Processing package information.

Removing pathnames in class <none>

/opt/BC635PCI/src/stfp.c

/opt/BC635PCI/src/bc63xPCIcfg

/opt/BC635PCI/src/bc635pci.c

/opt/BC635PCI/src/Makefile

/opt/BC635PCI/src

/opt/BC635PCI/include/stfpio.h

/opt/BC635PCI/include

/opt/BC635PCI

/opt <shared pathname not removed>

/kernel/drv/sparcv9/stfp

Executing postremove script.

- 195 -

5. Solaris SDK

BC635/637 PCI driver has been removed from the kernel.

Updating system information.

Removal of <BC635PCI> was successful.

5.2.3. Test Installation

The software is installed in /opt/BC635PCI. Use the sample program to test the installation.

cd /opt/BC635PCI

cd src

./bc63xPCIcfg

--

Symmetricom - TT & M

bc635/637PCIe-V2 Configurator

Version 3.0

--

1. Read Current Time (Press enter to return to menu)

2. Read Event Time (Press enter to return to menu)

3. Set Current Time

4. Set Current Year

5. Set Strobe Time

6. Program Control Register

7. Program Leap Event Seconds

8. Select Time Format

9. Select Operational Mode

10. Select Decoding TimeCode Format

11. Select TimeCode Output Format

12. Select Clock Source

13. Select Output Frequency

14. Program Heartbeat counters

15. Set Local Time Offset 16. Set Generator Time Offset

17. Set Propagation Delay 18. Set Local Time Offset Flag

19. Set Year Auto Increment Flag 20. Sync RTC to External Time Data

21. Set GPS Time Format 22. Set GPS Mode Flag

23. Software Reset 24. Request Time Settings

- 196 -

5.2. Installation

25. Request Clock Settings 26. Request Offset Settings

27. Request UTC Information 28. Request Model Information

29. Request Firmware Version 30. Advanced Menu

31. Interrupts Menu
32. GPS Packets Menu - bc637PCI

Only

33. PCI Revision ID 34. Read from Dual Port RAM

35. Write to Dual Port RAM 36. Write ACK - Send DP Command

37. DDS Menu - V2 Hardware Only

38. Select TimeCode Input Format - V2 Hardware

39. Select TimeCode Output Format - V2 Hardware

40. Read from Register 41. Write to Register

42. Select events settings

43. Read Event2 Time (Press enter to return to menu)

44. Read Event3 Time (Press enter to return to menu)

0. Exit the Pro-

gram..

Select:

The newer TFP hardware is referred to as the V2 hardware. The older hardware is referred to as the

V1 hardware. You can use option 33 (PCI Revision ID) to find out the hardware version. The V2 hard-

ware has Revision ID in the range [0x20, 0x2F]. The revision ID is stored in the PCI configure space

field 'Revision ID'.

The option 37 works for the V2 hardware only. The options 38 and 39mainly work for the V2 hard-

ware. Only a small set of options 38 and 39 work for the V1 hardware.

The V2 hardware supports time stamping external event2 and event3 if they are enabled. Refer to

Chapter 1 for details. The interrupt mask values for event2 and event3 are INT_EVENT2 and INT_

EVENT3 that are defined in 'stfpio.h'.

5.2.4. Driver Compilation

The driver module should work as is in its current binary format without the need for recompilation, so

this section is for completeness only.

A Makefile is provided with the source files. If you have 'make' or 'gnu-make' installed, you can

simply type 'make' or 'gmake' to compile. TheMakefile for the SPARC platform is shown below.

- 197 -

5. Solaris SDK

Makefile to build the stfp driver and the bc63xPCIcfg program

#

DRVFLAGS = -I. -m64 -xarch=sparc -xcode=abs32 -xregs=no%appl -xO3

APPFLAGS = -I. -m32 -xO3

DRIVER = stfp

PCIDEMO = bc63xPCIcfg

OBJS = stfp.o bc635pci.o

.PHONY: all

all: $(DRIVER) $(PCIDEMO)

.PHONY: clean

clean:

@rm -f $(OBJS)

@rm -f $(DRIVER)

@rm -f $(PCIDEMO)

$(DRIVER): stfp.o

ld -r -o $@ $+

$(PCIDEMO): bc635pci.o

$(CC) -o $@ $+

stfp.o: stfp.c

$(CC) -D_KERNEL -c $(DRVFLAGS) -o $@ $<

bc635pci.o: bc635pci.c

$(CC) -c $(APPFLAGS) -o $@ $<

- 198 -

5.3. Driver Function Definitions

Copy stfp into the / kernel/drv/sparcv9 directory. The driver is ready

to be installed using following add_ drv(1M) function.

add_ drv -m '* 0666 root sys' stfp

Use modunload(1M) to unload the driver from the system. Use modstat(1M)

to determine the module-id.

modunload -i module-id

The Makefile for the x86_64 platform is also provided. Make sure copy

stfp into the /kernel/drv/amd64 directory on the x86 platform.

5.3. Driver Function Definitions

5.3.1. General

The 'STFP' device driver provides functions for each of the programming packets supported by the

bc635PCI-V2, bc637PCI-V2, bc635PCIe, and bc637PCIe Time and Frequency Processor. In addi-

tion, functions are provided to both read and write individual registers and dual port RAM locations on

the card. To understand the usage and effects of each of these functions, please refer to Chapter 1.

5.3.2. Functions

The 'STFP' device driver supports the bc635PCI-V2, bc637PCI-V2, bc635PCIe, and bc637PCIe

Time and Frequency Processor (TFP)modules. The TFP supports time code decoding, syn-

chronization to an external 1pps (Pulse Per Second) signal, a free runningmode, a real time clock

mode, and theGPS Satellite System. A variety of timing outputs, all synchronous with the timing

source, are provided, including an IRIG B time code signal, a 1pps, programmable periodic, a time

coincidence strobe, and a 1, 5, or 10MHz clock, or a DDS frequency clock in the range from less

than 1Hz to greater than 100MHz.

The open (2), close (2), read (2), write (2), and ioctl (2) system calls are supported. Most TFP func-

tions, including the reading of the time, are accessed through the ioctl (2) call.

Read/ Write Calls

- 199 -

5. Solaris SDK

The only purpose for the read (2) call is to read aGPS data packet that was previously requested with

an ioctl (2) or write (2) call. These packets contain position, velocity, GPS system status, and other

GPS information. OneGPS packet is read for each read (2) call. ThemaximumGPS packet size is

defined by STFP_MAX_READ found in 'stfpio. h'. Refer to Chapter 1.

The packet data contains floating-point types as well as various integer types, but these elements

cannot be directly accessed when read into a char buffer because they are not properly aligned in

memory. To obtain access to the various types of GPS data elements, union structures are generally

used. For example, to extract a 4-byte float from the packet data, use the union shown below. Copy

four consecutive bytes of packet data into the fconv. uc[] array, starting with fconv. uc[0] (since Sun

workstations are big-endianmachines,) then access the float data as fconv. f.

union {

float f;

u_ char uc[4];

} fconv;

Following a successful read(2) call, the read buffer will contain the packet length, ID, and data bytes

of the requestedGPS data packet as described in the GPS documentation section of Chapter 1. Note

that a successful read(2) call will return the number of bytes read which will equal the packet length

plus 1 (one for the packet length byte itself.)

The write(2) call allows the user to send commands to the TFP. The TFP commands are used to set

the timingmode, time code format, and other TFP functions. Refer to Chapter 1 for TFP command

details. The write buffer must contain the TFP command ID and zero or more command data bytes.

As with GPS packets, command data consists of various data types that must be converted to a char

array for the write(2) call. Themaximum number of bytes used for a command is defined by STFP_

MAX_WRITE found in "stfpio. h". Most commands are implemented with ioctl(2) calls, which are

much simpler to use since they provide the conversion of data to an array of chars as required. Since

most TFP commands can be executed with ioctl(2) calls, the only really useful function for the

write(2) call is to execute the TFP commands that write data packets to the GPS receiver. In fact, the

write(2) call is the only way to sendGPS data packets to the GPS receiver. When write(2) is used to

execute theManually Request Packet from GPS Receiver command (command 0x32 described in

Chapter 1) and a response is expected (non-zero response packet ID), the write(2) call puts the call-

ing process to sleep until the response arrives. The driver will not call sleep() if the user has directed

the driver to send a signal on the occurrence of the INT_ PACKET (GPS packet available) interrupt.

The response packet can take 10's or 100's of milliseconds to arrive. The read(2) call can then be

used to read the response packet.

Ioctl Calls ioctl (fd, request[, arg])

- 200 -

5.3. Driver Function Definitions

The ioctl(2) request codes, as well as all the other defined constants listed below, are contained in

'stfpio. h'. For most ioctl() functions, arg is a pointer to data either used by or returned by the function.

Other functions either ignore arg or use it directly as an int value. In many functions, most of which

have request labels of the form SELXXX or CONTROLXXX, the int value selects some option from a

list of options defined in 'stfpio'.

Following each request code below is the arg type expected by the driver.

SELTIMINGMODE, int

Selects the TFP timingmode specified in the int arg.

SELTIMEFORMAT, int

Selects between the decimal and binary time formats. The decimal time format is characterized by

the TFP_ time structure. The binary time format is characterized by the TFP_ timeval structure.

These structures are declared in 'stfpio. h'.

TIMEREQUEST, int

EVENTREQUEST, int

The driver writes to the TIMEREQ or EVENTREQ register (the int value is ignored) which causes

time to be captured and held in the TIMEx or EVENTx registers. No time data is transferred.

RDTIME, *struct stfp_time

RDEVENT, *struct stfp_time

Reads time from the TFP TIMEx or EVENTx registers assuming the time format is decimal. Time is

not captured with these requests.

RDTIMETV, *struct stfp_timeval

RDEVENTTV, *struct stfp_timeval

Reads time from the TFP TIMEx or EVENTx registers assuming the time format is binary. Time is

not captured with these requests.

RDTIMEREQ, *struct stfp_time

RDEVENTREQ, *struct stfp_time

These requests capture and read time from the TFP TIMEx or EVENTx registers assuming the time

format is decimal.

- 201 -

5. Solaris SDK

RDTIMETVREQ, *struct stfp_timeval

RDEVENTTVREQ, *struct stfp_timeval

These requests capture and read time from the TFP TIMEx or EVENTx registers assuming the time

format is binary.

WRSTROBE, * struct stfp_time

Writes time to the STROBEx registers assuming the time format is decimal. This request disables

the Strobe output while the STROBEx registers are written.

WRSTROBETV, *struct stfp_timeval

Writes time to the STROBEx registers assuming the time format is binary. This request disables the

Strobe output while the STROBEx registers are written.

SELTCFORMAT, int

Selects the time code input format.

SELTCMOD, int

Selects the time code input modulation type.

SETTIME, int

Manually sets the TFP major time assuming the time format is binary. Theminor time is not affected.

SETDECTIME, struct stfp_dec_tm

Manually sets the TFP major time assuming the time format is decimal. Theminor time is not

affected

SETYEAR, int

Manually sets the TFP year.

SETPERIODIC, *struct periodic

This request sets the Programmable Periodic output frequency and enables the 1pps synchronous

mode.

- 202 -

5.3. Driver Function Definitions

SETTIMINGOFFSET, int

Sets the TFP timing offset with the int arg value.

SELFREQUENCYOUT, int

Selects output frequency (1, 5, or 10MHz).

CONTROLEVENT, int

This request performs a variety of functions relevant to the Event TimeCapture feature.

CONTROLSTROBE, int

This request performs a variety of functions relevant to the TimeCoincidence Strobe feature.

CAPUNLOCK, int

This request writes to the TFP UNLOCK register to release the Event Capture Lockout feature (if ena-

bled via CONTROLEVENT).

SETINTSIGNAL, int

Setup one or more interrupt sources to generate a signal (SIGUSR1) to the process making this ioctl(

2) call. The int arg is comprised of one or more interrupt source bits (defined in 'stfpio. h') OR'ed

together. The following ioctl(2) call would cause the driver to send a signal on the occurrence of the

Event Input and/ or StrobeOutput interrupt.

The signal handler can use the RDINTSIGNAL request to find out which interrupt source(s) caused

the signal. An arg value of 0 will disable signals.

ioctl (fd, SETINTSIGNAL, INT_ EVENT | INT_ STROBE);

RDINTSIGNAL, *int

Use this request to find out which interrupt source(s) generated the last signal.

Use the SETINTSIGNAL request to enable signals. The driver automatically clears the INTSTAT bits

during its interrupt service routine.

RDINTSTAT, *int

CLRINTSTAT, int

- 203 -

5. Solaris SDK

These requests allow the user to read and clear bits in the TFP INTSTAT register. All INTSTAT bits

can be read, but only those bits that are not setup to generate a signal can be cleared. Use these

requests to poll for the occurrence of one or more interrupt source(s) instead of using signals.

CONTROLTIMEBASE, int

This request performs a variety of time base control functions, such as oscillator disciplining and jam-

sync control, clock selection, etc.

SETDAC, int

Loads the TFP D/ A Converter with the int arg value.

RDDAC, *int

Reads the TFP D/ A Converter value.

SETDISCGAIN, int

Loads the TFP discipline gain.

REQGPSPACKET, int

This request is for users of the bc637PCI and bc637PCIe. The int arg contains one of the GPS packet

ID's supported with the Retrieve Packet from GPS Receiver command (command 0x31). The TFP

monitors and stores several commonly requested packets that the GPS receiver broadcasts peri-

odically to the TFP. These packets are available to be read immediately. GPS packets that are not

monitored by the TFP are requested from theGPS receiver by the TFP. Since this task can take 10's

or 100's of milliseconds, the driver puts the calling process to sleep until the GPS packet becomes

available. The driver will not call sleep() if the user has directed the driver to send a signal on the occur-

rence of the INT_ PACKET (GPS packet available) interrupt. The requested packet is read using the

read(2) call.

GETDATA, struct getdata_t

Gets various data packets from the board. See 'stfpio.h' for the list of commands you can request

using this command.

SOFTWARERESET, int

Issues a software reset on the card.

SETTCOUTFMT, int

- 204 -

5.3. Driver Function Definitions

Sets the time code output format

SETGENTMOFFSET, struct tcgenoffset

Sets the generator time code offset

SETLOCTMOFFSET, struct loctmoffset

Sets the local time offset

SETLEAPSECEVENT, struct leapseconds

This command can be used inmodes other thanGPS mode for inserting or deletion of one leap sec-

ond.

SETCLKVAL, int

This command advance/retard the TFP internal clock. The TFP can adjust its clock up to 100mil-

liseconds per each second. Each count is equal to 10microseconds.

SETGPSTMFMT, int

Modify the time base in GPS mode. This command determines whether the board will correct the

receivedGPS time for leap second offset and events

SETGPSMDFLG, int

By default, the TFP directs the GPS receiver to Static Mode of Operation after the TFP is tracking to

GPS. This Command allows the user to disable this feature. See Packet 2C in Chapter 1 for detail

description on this feature.

This function should only be used when the TFP is in GPS Mode of Operation.

SETLOCTMFLG, int

Enables or disables the local time offset

SETYRINCFLG, int

This commands the TFP to enable or disable the auto incrementing of the Year at the beginning of

each year. The Year variable is stored into the EEPROM for reference.

SYNCRTC,

- 205 -

5. Solaris SDK

This command forces the TFP to Synchronize the RTC time to current time.

DISCBATT,

This command disconnects the RTC IC from the Battery after power is turned off. Upon power on,

the TFP automatically connects the RTC IC to the battery.

RDCONTROL, *int

Reads the Control register

SETCONTROL, int

Sets the Control register

REQREVID, *int

Reads the Revision ID field in the PCI configure register space

RDDPOFFSET, *struct dp_rdwr_t

Reads the Dual Port RAM byte data at the specified offset

WRDPOFFSET, *struct dp_rdwr_t

Sets the Dual Port RAM byte data at the specified offset

SENDCOMMAND

This ioctl control code exposes the internal function that sends the command in the Dual Port RAM

input area to the timing engine for execution. In fact, many ioctl codes work by taking the input data

from the application to set up a command in the Dual Port RAM input area and then send the com-

mand to the timing engine for execution. The ioctl interface encapsulates this detail from the appli-

cation code. However, with the aboveWRDPOFFSET ioctl control code, now application code can

set up any Dual Port RAM command by writing the command and its data at the specified offsets.

The application can invoke SENDCOMMAND to send the command to the timing engine for

execution. This provides themaximum flexibility for application code to exercise features of the hard-

ware when suitable ioctl control codes may not be available.

DDSCOMMAND, *struct dds_command_t

Executes DDS commands. The DDS commands are Dual Port RAM commands that are sent to the

timing engine and be executed. The application code uses the 'cmd_id'field of the 'struct dds_

- 206 -

5.4. Example Program

command_t' to specify which DDS command to invoke. The source file 'bc635pci.c' for the demo pro-

gram defines a set of DDS functions, such as, bcSet-

PeriodicDDSSelect(),bcSetPeriodicDDSEnable(), etc. See the source code for details.

TCFORMATEX, *struct tc_command_t

Selects the time code input format and its sub type or time code output format and sub type. The hard-

ware supports a variety of input and output time codes. This ioctl control code supersedes both

SELTCFORMAT and SETTCOUTFMT ioctl codes. See stfpio.h for the definitions of supported time

codes and sub types. The sample code showing how to set input time code and its sub type is in the

function bcSetTcInEx() inside the file 'bc635pci.c'. Similarly, the function bcSetGenCodeEx() inside

the file 'bc635pci.c' shows how to set output time code and its sub type.

RDREGOFFSET, *struct reg_rdwr_t

Reads the register value from the specified address

WRREGOFFSET, *struct reg_rdwr_t

Sets the register value to the specified address

RDEVENT2TV, *struct stfp_timeval

Reads time from the EVENT2 registers assuming the time format is binary.

RDEVENT3TV, *struct stfp_timeval

Reads time from the EVENT3 registers assuming the time format is binary.

5.4. Example Program

5.4.1. General

The bc63xPCIcfg.exe is an example program that provides sample code. The program exercises the

device driver functions. It is also an example of convertingmany of the ASCII format data objects

passed to, and from the device into a binary format suitable for operation and conversion. The exam-

ple program was developed using discrete functions for each operation. This allows the developer to

clip any useful code and use it in their own applications.

- 207 -

5. Solaris SDK

5.4.2. Program Functions

Function open

Description Opens an instance of the device driver

Example

int fd;

if ((fd = open ("/dev/stfp0", O_RDWR)) < 0)

{

printf("Error opening Device Driver Exiting");

_exit(1);

}

Function close

Description Closes the device driver

Example close(fd);

Registers pci_read_time

Description Reads the time in binary or decimal time format

- 208 -

5.4. Example Program

Example

struct stfp_time stm;

struct stfp_timeval tvTime;

/* Decimal Time Format*/

ioctl (fd, RDTIMEREQ, &stm);

printf (" Julian Time: %03d %d %02d:%02d:%02d.%06d%d Status:

%x\n",

stm.tm.tm_yday+1, stm.tm.tm_year+1900,

stm.tm.tm_hour, stm.tm.tm_min, stm.tm.tm_sec, stm.usec,

stm.hnsec, stm.status);

/* Binary Time Format */

ioctl (fd, RDTIMETVREQ, &tvTime);

printf ("Binary Time: %lu.%06ld%d status: %x ",

tvTime.tv.tv_sec, tvTime.tv.tv_usec, tvTime.hnsec, tvTime.sta-

tus);

printf ("%s", ctime (&tvTime.tv.tv_sec));

Registers pci_read_event_time

Description Reads the event time in binary time format

Example ioctl (fd, RDEVENTTV, &tvTime);

Registers pci_read_event2_time

Description Reads the event2 time in binary time format

Example ioctl (fd, RDEVENT2TV, &tvTime);

Registers pci_read_event3_time

Description Reads the event3 time in binary time format

Example ioctl (fd, RDEVENT3TV, &tvTime);

Registers pci_set_strobe

Description Sets a strobemode and time

Example
ioctl (fd, CONTROLSTROBE, STROBE_SECUS);

ioctl (fd, CONTROLSTROBE, STROBE_USONLY);

- 209 -

5. Solaris SDK

Registers pci_set_control

Description Reads and sets the control register

Example
ioctl(fd, RDCONTROL, &ctlreg);

ioctl(fd, SETCONTROL, ctlreg);

Registers pci_revision ID

Description Reads Revision ID field of the PCI configure space

Example ioctl (fd, REQREVID, &rev_id);

Command 0x10 pci_mode

Description Sets the timingmode

Example ioctl (fd, SELTIMINGMODE, MODE_TIMECODE);

Command 0x11 pci_time_format

Description Sets the time format, binary or decimal

Example ioctl (fd, SELTIMEFORMAT, TIME_BINARY);

Command 0x12 pci_set_time

Description Sets the TFP time in either binary or decimal format

Example
ioctl (fd, SETDECTIME, dec);

ioctl (fd, SETTIME, tm_sec);

Command 0x13 pci_set_year

Description Sets the TFP year

Example ioctl (fd, SETYEAR, year);

Command 0x14 pci_heartbeat

Description Sets the heartbeat mode and frequency

Example ioctl (fd, SETPERIODIC, &sper);

Command 0x15 pci_time_code and its sub type

Description Sets the time code input format and its sub type

Example

struct tc_command_t tccmd;

tccmd.cmd_id = COM_SETTCFORMAT;

tccmd.type = TC_IRIGB;

tccmd.subtype = TC_SUBTYPE_Y;

ioctl (fd, TCFORMATEX, &tccmd);

- 210 -

5.4. Example Program

Registers pci_out_freq

Description Sets the frequency output 1, 5, 10MHz

Example ioctl (fd, SELFREQUENCYOUT, FREQ_10MHZ);

Command 0x15, 0x16 pci_time_code

Description Sets the time code input format andmodulation

Example
ioctl (fd, SELTCFORMAT, TC_IRIGB);

ioctl (fd, SELTCMOD, MOD_AM);

Command 0x17 pci_set_prop_delay

Description Set the time code propagation delay

Example ioctl (fd, SETTIMINGOFFSET, prop_delay);

Command 0x19 pci_req_time_settings

Description Request time settings

Example

/* Get Timing Mode */

get.arg = GETDATA_MODE;

if (!((ioctl (fd, GETDATA, &get)) < 0))

mode = (int)get.data.tmode;

Command 0x19 pci_req_clock_settings

Description Requests clock settings

Example

/* Get Clock Source */

get.arg = GETDATA_CLKSRC;

if (!((ioctl (fd, GETDATA, &get)) < 0))

clk_scr = (u_char)get.data.clksrc;

Command 0x19 pci_req_offsets_settings

Description Requests offsets settings

Example

/* Get Local Time Offset */

get.arg = GETDATA_LOCTMOFF;

if (!((ioctl (fd, GETDATA, &get)) < 0))

{

- 211 -

5. Solaris SDK

loc_off = (float)get.data.locoff.locoff;

loc_off_flg = (int)get.data.locoff.locflg;

}

Command 0x19 pci_req_utc_info

Description Request UTC Information

Example

/* Get UTC Info */

get.arg = GETDATA_UTCINFO;

ioctl (fd, GETDATA, &get);

Command 0x19 pci_req_clock_settings

Description Requests clock settings

Example

/* Get Clock Source */

get.arg = GETDATA_CLKSRC;

if (!((ioctl (fd, GETDATA, &get)) < 0))

clk_scr = (u_char)get.data.clksrc;

Command 0x1A pci_sw_reset

Description Issues a software reset on the TFP

Example ioctl (fd, SOFTWARERESET, 1);

Command 0x1B pci_tc_out_format

Description Sets the time code output format

Example ioctl (fd, SETTCOUTFMT, TC_IRIGB);

Command 0x1B pci_tc_out_format and its sub type

Description Sets the time code output format and its sub type

Example

struct tc_command_t tccmd;

tccmd.cmd_id = COM_SETTCOUTFMT;

tccmd.type = TC_IRIGE;

tccmd.subtype = TC_SUBTYPE_1;

ioctl (fd, TCFORMATEX, &tccmd);

Command 0x1C pci_set_gen_off

- 212 -

5.4. Example Program

Description Sets the generator time offset

Example ioctl (fd, SETGENTMOFFSET, &gen);

Command 0x1D pci_set_loc_off

Description Sets the local time offset

Example ioctl (fd, SETLOCTMOFFSET, &loc);

Command 0x1E pci_set_leap_sec

Description Program the leap seconds into the TFP

Example ioctl (fd, SETLEAPSECEVENT, &leap);

Command 0x20 pci_set_clock_src

Description Sets the clock source, internal or external

Example ioctl (fd, CONTROLTIMEBASE, CLOCK_INTERNAL);

Command 0x21 pci_ctl_jam_sync

Description Enable or disable the jam sync control

Example ioctl (fd, CONTROLTIMEBASE, JAMSYNC_DISABLE);

Command 0x22 pci_frc_jam_sync

Description Forces a jam sync on the TFP

Example ioctl (fd, CONTROLTIMEBASE, FORCE_JAMSYNC);

Command 0x24 pci_set_da_con

Description Loads the D/A converter

Example ioctl (fd, SETDAC, da_con);

Command 0x25 pci_set_gain

Description Sets the disciplining gain

Example ioctl (fd, SETDISCGAIN, dis_gain);

Command 0x27 pci_sync_rtc

Description Sync's the RTC to current time

Example ioctl (fd, SYNCRTC);

- 213 -

5. Solaris SDK

Command 0x28 pci_dis_rtc

Description Disconnect battery from RTC

Example ioctl (fd, DISCBATT);

Command 0x29 pci_set_clk_val

Description Sets the clock value of the TFP

Example ioctl (fd, SETCLKVAL, clk_val);

Command 0x33 pci_set_gps_tm_fmt

Description Sets GPS or UTC time format

Example ioctl (fd, SETGPSTMFMT, UTC_FMT);

Command 0x34 pci_set_gps_mode_flg

Description Enable or disable the GPS mode flag

Example ioctl (fd, SETGPSTMFMT, GPS_FLG_ENA);

Command 0x40 pci_set_local_off_flg

Description Enable or disable the local time offset

Example ioctl (fd, SETLOCTMFLG, LOC_OFF_DIS);

Command 0x42 pci_set_yr_auto_inc_flg

Description Enable or disable the year automatic increment

Example ioctl (fd, SETYRINCFLG, YR_INC_DIS);

Command 0x43 DDS or periodic output

Description Select DDS output or periodic output

Example

struct dds_command_t ddscmd;

ddscmd.cmd_id = COM_SET_PRD_DDS_SEL;

ddscmd.data.cmd_byte[0] = SELECT_DDS_OUT;

ddscmd.cmd_len = 1;

ioctl (fd, DDSCOMMAND, &ddscmd);

Command 0x44 DDS or periodic output enable

Description Enables or disables DDS output or periodic output

- 214 -

5.4. Example Program

Example

struct dds_command_t ddscmd;

ddscmd.cmd_id = COM_SET_PRD_DDS_ENA;

ddscmd.data.cmd_byte[0] = 1;

ddscmd.cmd_len = 1;

ioctl (fd, DDSCOMMAND, &ddscmd);

Command 0x45 DDS divider

Description Sets DDS divider value

Example

struct dds_command_t ddscmd;

ddscmd.cmd_id = COM_SET_DDS_DIVIDER;

ddscmd.data.cmd_byte[0] = DDS_DIVIDE_BY_1E2;

ddscmd.cmd_len = 1;

ioctl (fd, DDSCOMMAND, &ddscmd);

Command 0x46 DDS divider source

Description Sets DDS divider source

Example

struct dds_command_t ddscmd;

ddscmd.cmd_id = COM_SET_DDS_DIV_SRC;

ddscmd.data.cmd_byte[0] = DDS_DIVIDER_SRC_DDS;

ddscmd.cmd_len = 1;

ioctl (fd, DDSCOMMAND, &ddscmd);

Command 0x47 DDS sync mode

Description Sets DDS sync mode

Example

struct dds_command_t ddscmd;

ddscmd.cmd_id = COM_SET_DDS_DIV_SYNC;

ddscmd.data.cmd_byte[0] = DDS_SYNC_MODE_FRAC;

ddscmd.cmd_len = 1;

ioctl (fd, DDSCOMMAND, &ddscmd);

Command 0x48 DDS multiplier

- 215 -

5. Solaris SDK

Description Sets DDS multiplier value

Example

struct dds_command_t ddscmd;

ddscmd.cmd_id = COM_SET_DDS_MULTI;

ddscmd.data.cmd_byte[0] = DDS_MULTIPLY_BY_3;

ddscmd.cmd_len = 1;

ioctl (fd, DDSCOMMAND, &ddscmd);

Command 0x49 DDS period value

Description Sets DDS period value

Example

struct dds_command_t ddscmd;

ddscmd.cmd_id = COM_SET_DDS_PERIOD;

ddscmd.data.cmd_number = period; // [0, 0xFFFFFF]

ddscmd.cmd_len = 4;

ioctl (fd, DDSCOMMAND, &ddscmd);

Command 0x4A DDS tuning word

Description Sets DDS tuning word

Example

struct dds_command_t ddscmd;

ddscmd.cmd_id = COM_SET_DDS_TUNEWORD;

ddscmd.data.cmd_number = tuneWord;

ddscmd.cmd_len = 4;

ioctl (fd, DDSCOMMAND, &ddscmd);

Command 0x4F pci_req_fw_ver

Description Request firmware version

Example

/* Get Firmware Version */

get.arg = GETDATA_DTFW;

ioctl (fd, GETDATA, &get);

Command

0xF4,0xF5, 0xF6, 0xFE
pci_req_assembly

Description Request Model, Serial Number, Assembly Number and Hardware FAB

Example

/* Get TFP Model */

get.arg = GETDATA_TFPMODEL;

- 216 -

5.4. Example Program

ioctl (fd, GETDATA, &get);

4.4.3. Example 1: GPS Packet 46 - Health Packet Sample

int i;

char rbuf[STFP_MAX_READ];

printf ("\n\nGPS PACKET 46 - GPS HEALTH PACKET\n\n");

ioctl (fd, REQGPSPACKET, 0x46);

read (fd, rbuf, STFP_MAX_READ);

printf ("Raw Data: ");

for (i = 0; i < 18; i++)

printf ("%02X ", rbuf[i] & 0xff);

printf ("\nID: \t%02X \nStatus: 0x%02X \nError: \t0x%02X\n",

rbuf[1] & 0xff, rbuf[2] & 0xff, rbuf[3] & 0xff);

Note: Symmetricom bus cards support different GPS receivers. Please consult the Users Guide for

your bus card to access the GPS receiver commands that apply to your card.

4.4.4. Example 2: 1PPS Interrupt Sample

main ()

{

/* Open device */

open ("/dev/stfp0", O_RDWR);

/* Initialize to free Running Mode */

ioctl (fd, SELTIMINGMODE, MODE_FREERUN);

/* Initialize to binary time format */

ioctl (fd, SELTIMEFORMAT, TIME_BINARY);

/* Setup interrupt signal handler */

signal (SIGUSR1, sigHandler);

printf ("Hit RETURN to quit. . .\n");

- 217 -

5. Solaris SDK

/* enable 1PPS interrupt signals */

ioctl (fd, SETINTSIGNAL, INT_1PPS);

/* wait for RETURN key */

scanf ("%c", &junk);

/* disable interrupt signals */

ioctl (fd, SETINTSIGNAL, 0);

/* Close device */

close(fd);

}

void sigHandler (int sig, int code, struct sigcontext *scp, char *addr)

{

int intServiced;

/* Read Signal */

ioctl (fd, RDINTSIGNAL, &intServiced);

printf ("Got interrupt signal: %d Source: 0x%02X\n", sig, int-

Serviced);

}

The example program has demonstration for interrupt handling. You can access the interrupt menu

through choice 31 of themain bc63xPCIcfgmenu. Refer to 'pci_set_ints()' and 'intr_handler()' in

'bc635pci.c' for source code.

- 218 -

5.4. Example Program

Glossary

The following is a glossary of key terms used in the discussion of timing operations: An expanded

glossary of terms is available on-line at:

http://www.symmetricom.com/resource/glossary/

BCD: Binary Coded Decimal. Also called packed decimal, this is the representation of each digit of a

decimal number by four-bit binary numbers. For example, the number 42 would be encoded as 0100

0010 .

Coordinated Universal Time (UTC): See UTC.

COTS: Commercial Off-The-Shelf products or services that are generally available and not built to

customized specifications.

DCLS: Direct Current Level Shift, or digital IRIG.

Discipline: The word discipline, as used in this manual, means to adjust the frequency of the 10MHz

oscillator to track the incoming reference signal.

DPRAM: Dual Port RAM.

Epoch: A reference time or event. Epoch often refers to a one pulse per second event.

Event: An event is defined here as a transition of a digital signal (rising or falling), which can be used

to time stamp the event.

Flywheel: Tomaintain time or frequency accuracy when the reference source has been lost or

removed.

GPS: Global Positioning System. Originally designated NAVSTAR (Navigation System with Timing

And Ranging), GPS was developed by the US Department of Defense to provide all-weather round-

the-clock navigation capabilities for military ground, sea, and air forces.

HW: Hardware.

IRIG: Serial time format standardmaintained by the Inter Range Instrumentation Group.

ISA: Industry Standard Architecture; desktop PC adapter board specification.

Jamsync: Is the process of abruptly synchronizing with a time reference, as opposed to gradually

adjusting tomatch up with the time reference.

Major Time: Units of time larger than or equal to seconds.

MHz: A MegaHertz is onemillion (1,000,000) cycles per second.

Minor Time: Sub-second time to whatever resolution is supported.

MTBF: Mean Time Between Failure, ameasure of reliability. The longer the time span between fail-

ures, themore reliable the device.

MTTR: Mean Time ToRepair.

NASA 36: National Aeronautics & Space Administration 1-second BCD 36-bit TimeCode.

- 219 -

Glossary

NIST: National Institute of Standards and Technology, the National Measurement Institute in the

United States.

OCXO: Oven-Controlled Crystal Oscillator

OS: Operating System.

Packet: A group of bytes conforming to a defined structure. Packets are usually used in bit serial or

byte serial data transmissions to allow framing of the transmitted data. The bc637PCI-V2 uses data

packets to communicate with the optional GPS receiver.

PCI: Peripheral Component Interconnect, a local bus that supports high-speed connection with periph-

erals. It plugs into a PCI slot on themotherboard.

PCIe: PCI Express, (Peripheral Component Interconnect Express), officially abbreviated as PCIe, is

a computer expansion card standard designed to replace the older PCI, PCI-X, and AGP standards.

Introduced by Intel in 2004, PCIe is the latest standard for expansion cards that is available onmain-

stream personal computers. PCI Express is used in consumer, server, and industrial applications,

both as amotherboard-level interconnect (to link motherboard-mounted peripherals) and as an expan-

sion card interface for add-in boards. A key difference between PCIe and earlier PC buses is a topol-

ogy based on point-to-point serial links, rather than a shared parallel bus architecture.

PCISIG: PCI Special Interest Group.

PCM: Pulse CodeModulation.

Periodic: A programmable frequency that is obtained by dividing the TFP reference frequency. Peri-

odics are sometimes referred to as “heartbeats.” PICMG: PCI Industrial Computer Manufacturers

Group.

PLL: Phase-Locked Loop.

PPM: parts per million.

PPS: pulse per second.

RAM: Random Access Memory.

Resolution: Resolution of a time code refers to the smallest increment of time, whether it is days,

hours, seconds, or other increments.

Strobe: The strobe is a programmable “alarm.” It compares the reference time with a user-pro-

grammed time, and outputs a signal when the two values are the same. The signal is indicated by a

transition from low to high voltage. The duration of the signal is equal to 1 uSec. The Strobe function

is also referred to as TimeCompare.

SW: Software.

TCXO: Temperature Compensated Crystal Oscillator

TFP: Time and Frequency Processor is the name given to the bc63x family of products.

USNO: U.S. Naval Observatory, inWashington, D.C., where the atomic clock that serves as the offi-

cial source of time for the United States is maintained.

UTC: The international time standard is called Universal Coordinated Time or, more commonly, UTC,

for “Universal Time, Coordinated”. This ITU standard has been in effect since 1972. UTC is

- 220 -

5.4. Example Program

maintained by the Bureau International de l'Heure (BIH), which forms the basis of a coordinated dis-

semination of standard frequencies and time signals.

VCXO: Voltage-Controlled Crystal Oscillator.

- 221 -

Index

Index

6

64-Bit Applications 103

A

ACK Register 36

Additional TimingOutput Signals 21

AM TimeCode Calibration 21

API Calling Convention 104

B

bc635PCI-V2 and bc637PCI-V2 Jumpers 7

bc635PCIe and bc637PCIe Accessories 59

bc635PCIe and bc637PCIe Jumpers 7

bc637PCI/PCIe Additional Hardware 14

Breakout Cables 61

C

Calibration Procedure 22

Changing the TFP Card Front Panel 11

Contact Information iv

Continuous Mode 19

Control Register 29

Conventions iv

Copyright ii

D

DDS Output 19

Device Register Description 26

Device Registers 26

Divider Mode 20

Divider Source 19

DLL File 103

DPRAMCommand Summary 40

- 222 -

5.4. Example Program

Driver 102

Driver Packages 103

Dual-Port RAM Interface 35

E

Environmental Specifications 8

Errata iv

F

Field Upgrade of Embedded Program 23

Fractional Mode 19

Front Panel LED 8

G

GPS Antenna 8

GPS Default Parameters 68

GPS Receiver Interface 63

H

Heartbeat Output 18

I

Inputs 6

Inputs andOutputs 58

Installation 10

Installation Under Other Operating Systems 16

Installation UnderWindows 14

Installing the Card and Antenna 11

K

Key Features 4

L

Legacy and New Generation Cards 69

Linux SDK 139

Linux SDK Library Definitions 155

Linux SDK Programming Examples 186

Linux Software Development Kit 15

- 223 -

Index

M

Manually Request Packet from GPS Receiver (Command 0x32) 67

Microsoft Visual Studio 2008 106

Minimum System Requirements 14

Mode 0 17

Mode 1 17

Mode 2 17

Mode 3 17

Mode 6 17

Multiplier Mode 20

N

NoSync Read Time Function 104

O

Outputs 7

P

PCI BarMapping 70

PCI Bus Characteristics 6

PCI Memory Map 26

PCI/PCIe TFP Hardware 1

PCIe Bus Characteristics 6

PCIe Interrupts 21

Position Fix Mode 0 68

Position Fix Mode 1 68

Position Fix Mode 3 and 4 68

Position Fix Modes 68

Procedure for Changing the Front Panel 11

Project Creation 105

Q

Quickstart Guide to operating bc635PCIcfg.exe 72

Quickstart Guide to Operating bc637PCI GPS 87

Quickstart Guide to Operating bc637PCI GPS Demo 87

- 224 -

5.4. Example Program

Quickstart Guide to operating bc637PCIcfg.exe 87

R

Release Notes 102

response packet 67

S

Set High-8 / High-6Mode (GPS packet 0x75) 69

Set I/OOptions (GPS packet 0x35) 69

Set Operating Parameters (GPS packet 0x2C) 69

Signal Breakout Kit 59

Software Development Kit 103

Solaris Driver Function Definitions 199

Solaris Example Program 207

Solaris SDK 191

Solaris Software Development Kit 16

Specifications 5

Status Bits 34

Symmetricom Customer Assistance ii

T

TFP Device Register Summary 27

TFP DPRAMCommands 37

TFP I/O Connector 58

TimeCapture Registers 18

TimeCodeOutputs 5

TimeCoincidence StrobeOutput 21

Time Format 32

TraytimeWindows Applications Program 97

TrayTime.exe 103

W

Warranty ii

Windows Application Programs 72

Windows SDK 101

- 225 -

Index

Windows SDK Command Finder 107

Windows SDKFunctions 109

Windows Software Development Kit 14

Z

z 5

- 226 -

	Symmetricom Customer Assistance
	Copyright
	Intellectual Property
	Limited Product Warranty
	Contact Information
	Conventions
	Errata
	1. PCI/PCIe TFP Hardware
	1.1. Introduction
	1.1.1. General Information
	1.1.2. Key Features
	1.1.4. Specifications and Settings
	Time Code Inputs
	Time Code Outputs
	PCIe Bus Characteristics
	PCI Bus Characteristics
	Inputs
	Outputs
	bc635PCI-V2 and bc637PCI-V2 Jumpers
	bc635PCIe and bc637PCIe Jumpers
	Environmental Specifications
	Front Panel LED
	GPS Antenna

	1.2. Installation
	1.2.1. General
	1.2.2. Installing the Card and Antenna
	Installing the Card
	Changing the TFP Card Front Panel
	Procedure for Changing the TFP Card Front Panel
	Antenna Location and Installation (bc637PCI-V2 and bc637PCIe)
	Quick Initial Setup
	Permanent Antenna Installation

	1.2.3. bc637PCI/PCIe Additional Hardware
	1.2.4. Minimum System Requirements
	1.2.5. Installation Under Windows
	1.2.6. Windows Software Development Kit
	1.2.7. Linux Software Development Kit
	1.2.8. Solaris Software Development Kit
	1.2.9. Installation Under Other Operating Systems

	1.3. Functional Description
	1.3.1. General
	Mode 0 (Time Code Mode)
	Mode 1 (Free Running Mode)
	Mode 2 (External 1 PPS Mode)
	Mode 3 (RTC)
	Mode 6 (GPS) - bc637PCI-V2 and bc637PCIe
	Time Capture Registers

	1.3.2. Heartbeat Output
	1.3.3. DDS Output
	Continuous mode
	Fractional mode
	Divider Source
	Divider Mode
	Multiplier Mode

	1.3.4. Time Coincidence Strobe Output
	1.3.5. PCI(e) Interrupts
	1.3.6. Additional Timing Output Signals
	1.3.7. AM Time Code Calibration
	1.3.8. Calibration Procedure
	1.3.9. Field Upgrade of Embedded Program

	1.4. Device Registers
	1.4.1. General
	1.4.2. PCI Memory Map
	1.4.3. Device Register Description
	TFP Device Register Summary
	TIMEREQ Register (0x00)
	EVENTREQ Register (0x04)
	UNLOCK1 Register (0x08)
	UNLOCK2 Register (0x0C)
	CONTROL Register (0x10)
	CONTROL Register
	ACK Register (0x14)
	MASK Register (0x18)
	INTSTAT Register (0x1C)
	INTSTAT Register
	MINSTRB �⠀　砀㈀　) – MAJSTRB �⠀　砀㈀㐀) Registers
	EVENT2_0 �⠀　砀㈀㠀) – EVENT2_1 �⠀　砀㈀䌀) Registers
	TIME0 (0x30) - TIME1 (0x34) Registers
	EVENT0 (0x38) - EVENT1 (0x3C) Registers
	UNLOCK3 Register (0x44)
	EVENT3_0 �⠀　砀㐀㠀) – EVENT3_1 �⠀　砀㐀䌀) Registers

	1.4.4. TIME FORMAT
	STATUS BITS
	Status Bits Summary
	STATUS: Tracking (Bit 24)
	STATUS: Phase (Bit 25)
	STATUS: Frequency Offset (Bit 26)

	1.5. Dual-Port RAM Interface
	1.5.1. General
	Input Area
	Output Area
	GPS Area
	Year Area
	DPRAM Address and Contents

	1.5.2. ACK Register
	ACK Bit 0
	ACK Bit 2
	ACK Bit 7

	1.5.3. TFP DPRAM Commands
	DPRAM Command Summary
	Command 0x10: Set TFP Timing Mode
	Command 0x11: Set Time Register Format
	Command 0x12: Set Major Time
	Command 0x13: Set Year
	Command 0x14: Set Periodic Output
	Command 0x15: Set Input Time Code Format
	Command 0x16: Set Input Time Code Modulation Type
	Command 0x17: Set Propagation Delay Compensation
	Command 0x18: Request UTC Time Data (bc637 only)
	Command 0x19: Request TFP Data
	Command 0x1A: Software Reset
	Command 0x1B: Set Time Code Output Format
	Command 0x1C: Set Generator Time Offset
	Command 0x1D: Set Local Time Offset
	Command 0x1E: Program Leap Second Event
	Command 0x1F: Request Firmware Information
	Command 0x20: Select Clock Source
	Command 0x21: Control Jamsync
	Command 0x22: Force Jamsync
	Command 0x24: Load DAC
	Command 0x25: Set Disciplining Gain
	Command 0x26: Request Battery Connection Status
	Command 0x27: Synchronize RTC to External Time Data
	Command 0x28: RTC Battery Connection Control
	Command 0x30: Send Packet to GPS Receiver (bc637 only)
	Command 0x31: Request Packet from GPS Receiver (bc637 only)
	Command 0x32: Manually Request Packet from GPS Receiver (bc637 only)
	Command 0x33: Set GPS Time Format (bc637 only)
	Command 0x40: Observe Local Time Flag
	Command 0x41: IEEE 1344 Daylight Saving and Local Time Flags
	Command 0x43: Select Periodic or DDS Output
	Command 0x44: Periodic or DDS Output Enable
	Command 0x45: DDS Divide Select
	Command 0x46: DDS Divide Source
	Command 0x47: DDS Synchronization Mode Select
	Command 0x48: DDS Multiplier Value
	Command 0x49: DDS Period Value
	Command 0x4A: DDS Tuning Word
	Command 0x4F: PCI Firmware Part Number (request only)
	Command 0xF6: TFP Model Identification (request only)
	Command 0xFE: TFP Serial Number (request only)

	1.6. Inputs and Outputs
	1.6.1. TFP I/O Connector Signals
	1.6.2. bc635PCIe and bc637PCIe Accessories
	Signal Breakout Kit
	Breakout Cables
	Timing Input/Output Breakout cable and Patch Panel BNC Map

	1.7. GPS Receiver Interface
	1.7.1. General
	1.7.2. GPS Timing Mode (Mode 6) Characteristics
	1.7.3. Communicating With the GPS Receiver
	Sending GPS Data Packets to the GPS Receiver
	Receiving GPS Data Packets from the GPS Receiver
	Retrieve Packet from GPS Receiver (Command 0x31)
	Manually Request Packet from GPS Receiver (Command 0x32)

	1.7.4. Position Fix Modes
	Position Fix Mode 0
	Position Fix Mode 1
	Position Fix Mode 3 and 4

	1.8.5. GPS Default Parameters
	Set Operating Parameters (GPS packet 0x2C)
	Set High-8 / High-6 Mode (GPS packet 0x75)
	Set I/O Options (GPS packet 0x35)

	1.9. Legacy and New Generation Cards
	1.9.1. PCI Bar Mapping
	1.9.2. Differences Between Versions -U and New Generation Cards

	2. Windows Application Programs
	2.1. bc635PCIcfg.exe Windows Application Program
	2.1.1. General
	2.1.2. Quickstart Guide to Operating bc635PCIcfg.exe
	2.1.3. bc637PCIcfg Program Menu Interface
	File Menu
	Time Menu
	Time Code Menu
	Signals Menu
	Hardware Menu
	Special Menu
	PCI Menu
	Help Menu

	2.2. bc637PCIcfg.exe Windows Application Program
	2.2.1. General
	2.2.2. Quickstart Guide to Operating bc637PCIcfg.exe
	2.2.3. bc637PCIcfg.exe Program Menu Interface
	File Menu
	Time Menu
	Status Menu
	Mode Menu
	Position Menu
	Options Menu
	Request Menu
	Send Menu
	Reset Menu
	Help Menu

	2.3. Traytime Windows Application Program
	2.3.1. Installation
	2.3.2. Functionality
	2.3.3. TrayTime Dialog Windows
	Main Window
	TrayTime Setup - Status Window
	TrayTime Setup - Configuration Window

	3. Windows SDK
	3.1. Introduction
	3.1.1. General
	3.1.2. Features
	3.1.3. Overview

	3.2. Release Notes
	Driver
	Installation
	Driver Packages
	64-Bit Applications
	DLL File
	Software Developers Kit
	TrayTime.exe
	API Calling Convention
	NoSync Read Time Functions

	3.3. Installation
	Hardware and driver installation
	Software developer's kit installation
	Configuration
	Test installation
	Project creation
	Microsoft Visual C++ 6.0

	Microsoft Visual Studio 2008

	3.4. Library definitions
	General
	Windows SDK Command Finder
	Functions

	4. Linux SDK
	4.1. Introduction
	4.1.1. General
	4.1.2. Features
	4.1.3. Overview

	4.2. Installation
	4.2.1. Hardware installation
	4.2.2. Software installation
	4.2.3. Linux kernel versions supported
	4.2.4. Test Installation
	4.2.5. Using the bc63xPCIcfg.exe program
	Select Operational Mode
	Request Time Settings
	Select Timecode Decoding Format
	Request Timecode Settings
	Select Timecode Output Format
	Select the Time Register Format
	Read Current Time
	Set Current Time
	Set Current Year
	Request Model Information
	DDS Frequency and New Time Codes
	Compatibility with Old bc635PCI or bc637PCI Card
	Uninstall Instructions

	4.3. Library Definitions
	4.3.1. General
	4.3.2. Functions

	4.4. Programming Examples
	4.4.1. General
	4.4.2. Starting and Stopping the Device
	4.4.3. Reading Time On Demand
	Reading in Binary Time Format
	Reading in Decimal Time Format

	3.4.4. Setting theTFP Mode
	4.4.5. Setting Interrupts

	5. Solaris SDK
	5.1. Introduction
	5.1.1. General
	5.1.2. Features
	5.1.3. Overview

	5.2. Installation
	5.2.1. Hardware Installation
	5.2.2. Software Installation
	5.2.3. Test Installation
	5.2.4. Driver Compilation

	5.3. Driver Function Definitions
	5.3.1. General
	5.3.2. Functions

	5.4. Example Program
	5.4.1. General
	5.4.2. Program Functions
	4.4.3. Example 1: GPS Packet 46 - Health Packet Sample
	4.4.4. Example 2: 1PPS Interrupt Sample

	Glossary
	Index

