RELIABILITY REPORT

FOR

MAX3636ETM+T

PLASTIC ENCAPSULATED DEVICES

December 22, 2011

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by			
Richard Aburano			
Quality Assurance			
Manager, Reliability Engineering			

Conclusion

The MAX3636ETM+T successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information		
IIManufacturing Information	VIReliability Evaluation		
IIIPackaging Information	IVDie Information		
Attachments			

I. Device Description

A. General

The MAX3636 is a highly flexible, precision phase-locked loop (PLL) clock generator optimized for the next generation of network equipment that demands low-jitter clock generation and distribution for robust high-speed data transmission. The device features subpicosecond jitter generation, excellent power-supply noise rejection, and pin-programmable LVDS/LVPECL output interfaces. The MAX3636 provides nine differential outputs and one LVCMOS output, divided into three banks. The frequency and output interface of each output bank can be individually programmed, making this device an ideal replacement for multiple crystal oscillators and clock distribution ICs on a system board, saving cost and space. This 3.3V IC is available in a 7mm x 7mm, 48-pin TQFN package and operates from -40°C to +85°C.

II. Manufacturing Information

A. Description/Function: Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10

Outputs

MB3 B. Process: 31015 C. Number of Device Transistors: D. Fabrication Location: USA

E. Assembly Location: China, Taiwan and Thailand

F. Date of Initial Production: September 16, 2011

III. Packaging Information

A. Package Type: 48-pin TQFN 7x7

B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin D. Die Attach: Conductive E. Bondwire: Au (1 mil dia.) F. Mold Material: Epoxy with silica filler G. Assembly Diagram: #05-9000-3657 H. Flammability Rating: Class UL94-V0 Level 1

I. Classification of Moisture Sensitivity per

JEDEC standard J-STD-020-C

36°C/W J. Single Layer Theta Ja: K. Single Layer Theta Jc: 1°C/W L. Multi Layer Theta Ja: 25°C/W M. Multi Layer Theta Jc: 1°C/W

IV. Die Information

A. Dimensions: 129.92 X 129.92 mils

B. Passivation: **BCB** C. Interconnect: AI/0.5%Cu D. Backside Metallization: None

E. Minimum Metal Width: Metal1 = 0.23 / Metal2 = 0.6 / Metal3 = 1.2 / Metal4 = 4 microns (as drawn) F. Minimum Metal Spacing: Metal1 = 0.23 / Metal2 = 0.5 / Metal3 = 1.2 / Metal4 = 4 microns (as drawn)

G. Bondpad Dimensions:

H. Isolation Dielectric: SiO₂ I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Richard Aburano (Manager, Reliability Engineering)

Don Lipps (Manager, Reliability Engineering)

Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135C biased (static) life test are shown in Table 1. Using these results, the Failure Rate ($\,^{\lambda}$) is calculated as follows:

$$\lambda = \underbrace{\frac{1}{\text{MTTF}}}_{\text{measure}} = \underbrace{\frac{1.83}{192 \times 4340 \times 80 \times 2}}_{\text{(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)}}_{\text{measure}}$$

$$x = 13.7 \times 10^{-9}$$

 $x = 13.7 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the MB3 Process results in a FIT Rate of 0.06 @ 25C and 1.05 @ 55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (lot S24W5Q001D, D/C 1129)

The HQ91-0 die type has been found to have all pins able to withstand a HBM transient pulse of +/- 2500V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/- 250mA and overvoltage per JEDEC JESD78.

Table 1Reliability Evaluation Test Results

MAX3636ETM+T

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS
Static Life Test (N	ote 1) Ta = 135C Biased Time = 192 hrs.	DC Parameters & functionality	80	0	S24W5Q001D, D/C 1129

Note 1: Life Test Data may represent plastic DIP qualification lots.